HÌNH HỌC SBT - TOÁN 11

Bài 2.39 trang 81 SBT hình học 11

Đề bài

Từ các đỉnh của tam giác \(ABC\) ta kẻ các đoạn thẳng \(AA’\), \(BB’\), \(CC’\) song song, cùng chiều, bằng nhau và không nằm trong mặt phẳng của tam giác. Gọi \(I\), \(G\) và \(K\) lần lượt là trọng tâm của các tam giác \(ABC\), \(ACC’\), \(A’B’C’\).

a) Chứng minh \(\left( {IGK} \right)\parallel \left( {BB'CC'} \right)\).

b) Chứng minh rằng \(\left( {A'GK} \right)\parallel \left( {AIB'} \right)\).

 

Phương pháp giải - Xem chi tiết

Để chứng minh hai mặt phẳng song song ta chứng minh mặt phẳng này chứa hai đường thẳng cắt nhau cùng song song với mặt phẳng kia.

\(\left\{ \begin{array}{l}d\text{ cắt } d'; d\text{ và }d'\subset (\alpha)\\d\parallel (\beta )\\d'\parallel (\beta) \end{array}\right. \Rightarrow (\alpha)\parallel (\beta)\)

Bài toán sử dụng tính chất của trong tâm, định lý Talet.

Lời giải chi tiết

 

a) Gọi \(E\), \(F\), \(M\) lần lượt là trung điểm của là trung điểm của \(BC\), \(B'C'\), \(CC'\).

\(I\) là trọng tâm của tam giác \(ABC\)

\(\Rightarrow \dfrac{AI}{AE}=\dfrac{2}{3}\).

\(G\) là trọng tâm của tam giác \(ACC'\)

\(\Rightarrow \dfrac{AG}{AM}=\dfrac{2}{3}\).

Từ đó suy ra \(\dfrac{AI}{AE}=\dfrac{AG}{AM}=\dfrac{2}{3}\).

\(\Rightarrow IG\parallel EM\) mà \(EM\subset (BB'C'C)\)

\(\Rightarrow IG\parallel (BB'C'C)\text{   (1)}\)

\(K\) là trọng tâm của tam giác \((A'B'C')\) khi đó \(\dfrac{A'K}{A'F}=\dfrac{2}{3}\).

Từ đó suy ra \(\dfrac{AI}{AE}=\dfrac{AK}{AF}=\dfrac{2}{3}\).

\(\Rightarrow IK\parallel AA'\) mà \(AA'\parallel BB'\)

\(\Rightarrow IK\parallel BB'\) mà \(BB'\subset (BB'C'C)\)

\(\Rightarrow IK\parallel (BB'C'C)\text{   (2)}\)

Mà \(IG, IK\subset(IGK)\text{   (3)}\)

Từ \(\text{(1)}\), \(\text{(2)}\) và \(\text{(3)}\) suy ra \((IGK)\parallel (BB'C'C)\).

b) Do \(E\in AI, AI\subset (AIB')\)

\(\Rightarrow E\in (AIB')\)

\(C\in A'G, A'G\subset (A'GK)\)

\(\Rightarrow C\in (A'GK)\)

Ta có \(B'E\parallel FC\) (do tứ giác \(B'FCG\) là hình bình hành).

Khi đó \(B'E\parallel (A'GK)\)  \(\text{(1)}\)

\(AI\parallel A'K\) (do tứ giác \(A'FEA\) là hình bình hành).

Khi đó \(AI\parallel (A'GK)\)  \(\text{(2)}\)

Mà \(B'E \text{ và } AI \subset (AIB')\) \(\text{(3)}\)

Từ \(\text{(1)}\), \(\text{(2)}\), \(\text{(3)}\) suy ra \(\left( {A'GK} \right)\parallel \left( {AIB'} \right)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved