Bài 1. Đại cương về đường thằng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi và bài tập
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Đề toán tổng hợp
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi trắc nghiệm
Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến
Bài 3. Phép đối xứng trục
Bài 4. Phép đối xứng tâm
Bài 5. Phép quay
Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
Bài 7. Phép vị tự
Bài 8. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi và bài tập
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Đề toán tổng hợp
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi trắc nghiệm
Đề bài
Cho hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) cắt nhau theo giao tuyến m. Trên đường thẳng d cắt \(\left( \alpha \right)\) ở A và cắt \(\left( \beta \right)\) ở B ta lấy hai diểm cố định S1,S2 không thuộc \(\left( \alpha \right)\), \(\left( \beta \right)\). Gọi M là một điểm di động trên \(\left( \beta \right)\). Giả sử các đường thẳng \(M{S_1},M{S_2}\) cắt \(\left( \alpha \right)\) lần lượt tại M1 và M2.
a) Chứng minh rằng M1M2 luôn luôn đi qua một điểm cố định.
b) Giả sử đường thẳng M1M2 cắt giao tuyến m tại K. Chứng minh rằng ba điểm K, B, M thẳng hàng.
c) Gọi b là một đường thẳng thuộc mặt phẳng \(\left( \beta \right)\) nhưng không đi qua điểm B và cắt m tại I. Chứng minh rằng khi M di động trên b thì các điểm M1 và M2 di động trên hai đường thẳng cố định thuộc mặt phẳng \(\left( \alpha \right)\).
Phương pháp giải - Xem chi tiết
a) Chứng minh \(M_1M_2\) đi qua \(A\) cố định.
b) Chứng minh \(K\) thuộc giao tuyến của \((M,d)\) và \((\beta )\).
Lời giải chi tiết
a) Mặt phẳng (M, d) cắt \(\left( \alpha \right)\) theo giao tuyến M1M2. Điểm A cũng thuộc giao tuyến đó. Vậy đường thẳng M1M2 luôn luôn đi qua điểm A cố định.
b) Mặt phẳng (M, d) cắt \(\left( \beta \right)\) theo giao tuyến BM. Điểm K thuộc giao tuyến đó nên ba điểm K, B, M thẳng hàng.
c) Giả sử b cắt m tại I thì mặt phẳng (S1, b) luôn luôn cắt \(\left( \alpha \right)\) theo giao tuyến IM1. Do đó điểm M1 di động trên giao tuyến của IM1 cố định. Còn khi M di động trên b thì mặt phẳng (S2, b) cắt \(\left( \alpha \right)\) theo giao tuyến IM2. Do đó điểm M2 chạy trên giao tuyến IM2 cố định.
Unit 9: Education in the future
Review Unit 3
Bài 6. Giới thiệu một số loại súng bộ binh, thuốc nổ, vật cản và vũ khí tự tạo
Review Unit 1
Bài 3. Phòng chống tệ nạn xã hội ở Việt Nam trong thời kì hội nhập quốc tế
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11