PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 2

Bài 25 trang 169 SBT toán 9 tập 2

Đề bài

Cho tam giác \(ABC\) vuông tại \(A.\) Gọi \({V_1},{V_2},{V_3}\) theo thứ tự là thể tích của những hình sinh ra khi quay tam giác \(ABC\) một vòng xung quanh các cạnh \(BC, AB\) và \(AC.\) Chứng minh rằng:

\(\displaystyle {1 \over {V_1^2}} = {1 \over {V_2^2}} + {1 \over {V_3^2}}.\)

Phương pháp giải - Xem chi tiết

Sử dụng:

- Thể tích hình nón: \(\displaystyle V = {1 \over 3}\pi {r^2}h\).

(\(r\) là bán kính đường tròn đáy, \(h\) là chiều cao).

- Định lí Pytago trong tam giác vuông: Bình phương của cạnh huyền bằng tổng các bình phương của các cạnh góc vuông.

Lời giải chi tiết

 

Giải Toán: Cho Tam Giác ABC Vuông Tại A đường Cao AH | Lessonopoly

\(∆ABC\) có \(\widehat A = 90^\circ \), đặt \(AB = c, AC = b, BC = a, AH = h\); \(AH\) là đường cao kẻ từ đỉnh \(A\) đến cạnh huyền \(BC\).

Ta có: \(\displaystyle h = {{bc} \over a}\) (hệ thức lượng trong tam giác vuông)

- Khi quay tam giác vuông \(ABC\) quanh cạnh huyền \(BC\) một vòng thì cạnh \(AB\) và \(AC\) vạch nên hai hình nón có chung đáy có bán kính đáy bằng đường cao \(AH\) và tổng chiều cao \(2\) hình nón bằng cạnh huyền \(BC.\) Như vậy, thể tích hình sinh ra là:

\(\displaystyle {V_1} = {1 \over 3}\pi .A{H^2}. HB + {1 \over 3}\pi .A{H^2}.HC\)

\( \displaystyle = {1 \over 3}A{H^2}.(HB+HC) \)

\( \displaystyle = {1 \over 3}A{H^2}.BC \)

\(\displaystyle = {1 \over 3}\pi {\left( {{{bc} \over a}} \right)^2}.a = {{\pi {b^2}{c^2}} \over {3a}}\)

\( \Rightarrow \dfrac{1}{{V_1^2}} = \dfrac{1}{{{{\left( {\dfrac{{\pi {b^2}{c^2}}}{{3a}}} \right)}^2}}} = \dfrac{{9{a^2}}}{{{\pi ^2}{b^4}{c^4}}}\)           (1)

- Khi quay \(∆ABC\) quanh cạnh \(AB\) một vòng ta thu được hình nón có chiều cao \(AB = c\), bán kính đáy \(AC = b\) và thể tích hình sinh ra là:

\(\displaystyle {V_2} = {1 \over 3}\pi .A{C^2}.AB = {1 \over 3}\pi {b^2}c\)

\(\displaystyle \Rightarrow {1 \over {V_2^2}} = {1 \over {\left( \displaystyle {{{\pi {b^2}c} \over 3}} \right)^2}} = {9 \over {{\pi ^2}{b^4}{c^2}}}\)

- Khi quay \(∆ABC\) quanh cạnh \(AC\) một vòng ta thu được hình nón có chiều cao \(AC = b\), bán kính đáy \(AB = c\) và thể tích hình sinh ra là:

\(\displaystyle {V_3} = {1 \over 3}{\rm{A}}{{\rm{B}}^2}.AC = {1 \over 3}\pi {c^2}b\)

\(\displaystyle \Rightarrow  {1 \over {V_3^2}} = {1 \over {\left(\displaystyle  {{{\pi b{c^2}} \over 3}} \right)^2}} = {9 \over {{\pi ^2}{b^2}{c^4}}}\)

 

Ta có:

\(\displaystyle {1 \over {V_2^2}} + {1 \over {V_3^2}} = {9 \over {{\pi ^2}{b^4}{c^2}}} + {9 \over {{\pi ^2}{b^2}{c^4}}} \)\(\,\displaystyle = {{9({b^2} + {c^2})} \over {{\pi ^2}{b^4}{c^4}}}\)

Áp dụng định lí Pytago vào \(∆ABC\) vuông tại \(A\), ta có:

\({b^2} + {c^2} = {a^2} \)

\(\displaystyle \Rightarrow {1 \over {V_2^2}} + {1 \over {V_3^2}}  = {{9({b^2} + {c^2})} \over {{\pi ^2}{b^4}{c^4}}}\)\(\,\displaystyle= {{9{a^2}} \over {{\pi ^2}{b^4}{c^4}}}\)            (2)

Từ (1) và (2) suy ra: \(\displaystyle {1 \over {V_1^2}} = {1 \over {V_2^2}} + {1 \over {V_3^2}}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved