Giả sử \(A\) và \(B\) là hai biến cố \(\dfrac{{P\left( {A \cup B} \right)}}{{P\left( A \right) + P\left( B \right)}} = a\). Chứng minh rằng
LG a
\(\dfrac{{P\left( {A \cap B} \right)}}{{P\left( A \right) + P\left( B \right)}} = 1 - a\)
Phương pháp giải:
Sử dụng tính chất hai biến cố \(A\) và \(B\) bất kì
cùng liên quan đến phép thử thì
\(P(A\cup B)=\)
\(P(A)+P(B)-P(A\cap B)\).
Lời giải chi tiết:
Theo tính chất hai biến cố \(A\) và \(B\) bất kì
cùng liên quan đến phép thử thì
\(P(A\cup B)\)
\(=P(A)+P(B)-P(A\cap B)\)
\(\Leftrightarrow P\left( {A \cap B} \right) \)
\(= P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right)\)
Nên \(\dfrac{{P\left( {A \cap B} \right)}}{{P\left( A \right) + P\left( B \right)}} \)
\(= \dfrac{{P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right)}}{{P\left( A \right) + P\left( B \right)}} \)
\(= 1 - a\).
LG b
\(\dfrac{1}{2} \le a \le 1\).
Phương pháp giải:
Sử dụng tính chất hai biến cố \(A\) và \(B\) bất kì
cùng liên quan đến phép thử thì
\(P(A\cup B)=\)
\(P(A)+P(B)-P(A\cap B)\).
Lời giải chi tiết:
Vì \(P\left( {A \cup B} \right) \)
\(= P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right) \)
\(\le P\left( A \right) + P\left( B \right)\)
Nên \(a = \dfrac{{P\left( {A \cup B} \right)}}{{P\left( A \right) + P\left( B \right)}} \le 1{\rm{ }}\) \(\text{ (1)}\)
Mặt khác, \(2P\left( {A \cup B} \right) = P\left( {A \cup B} \right) + P\left( {A \cup B} \right) \)
\(\ge P\left( A \right) + P\left( B \right)\).
Vậy \(a = \dfrac{{P\left( {A \cup B} \right)}}{{P\left( A \right) + P\left( B \right)}} \ge \dfrac{1}{2}\).
Kết hợp với \(\text{(1)}\), ta có \(\dfrac{1}{2} \le a \le 1\).
Bài 2. Luật Nghĩa vụ quân sự và trách nhiệm của học sinh
Bài 5. Kiến thức phổ thông về phòng không nhân dân
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Ngữ văn lớp 11
Đề thi học kì 2 mới nhất có lời giải
Bài 7: Tiết 4: Cộng hòa liên bang Đức - Tập bản đồ Địa lí 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11