Bài 2.7 trang 47 SBT hình học 12

Đề bài

Cho mặt phẳng (P). Gọi A là một điểm nằm trên (P) và B là một điểm nằm ngoài (P) sao cho hình chiếu H của B trên (P) không trùng với A. Một điểm M chạy trên mặt phẳng  (P) sao cho góc ABM^=BMH^ . Chứng minh rằng  điểm M luôn luôn nằm trên một mặt trụ tròn xoay có trục là AB.

Phương pháp giải - Xem chi tiết

Gọi I là hình chiếu của M lên AB. Chứng minh MI=BH không đổi và suy ra khối trụ cần tìm.

Lời giải chi tiết

 

 

.

 

Giả sử ta có điểm M thuộc mặt phẳng (P) thỏa mãn các điều kiện của giả thiết đã cho.

Gọi I là hình chiếu vuông góc của M trên AB.

Xét tam giác vuông BIM và MHB có:

BMBM chung.

B^=M^ (giả thiết)

Suy ra ΔBIM=ΔMHB(chgn)

Do đó  MI = BH không đổi hay M luôn cách AB một khoảng không đổi.

Vậy điểm M luôn luôn nằm trên mặt trụ trục AB và có bán kính bằng BH.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved