Đề bài
Cho mặt phẳng (P). Gọi A là một điểm nằm trên (P) và B là một điểm nằm ngoài (P) sao cho hình chiếu H của B trên (P) không trùng với A. Một điểm M chạy trên mặt phẳng (P) sao cho góc . Chứng minh rằng điểm M luôn luôn nằm trên một mặt trụ tròn xoay có trục là AB.
Phương pháp giải - Xem chi tiết
Gọi I là hình chiếu của M lên AB. Chứng minh MI=BH không đổi và suy ra khối trụ cần tìm.
Lời giải chi tiết
.
Giả sử ta có điểm M thuộc mặt phẳng (P) thỏa mãn các điều kiện của giả thiết đã cho.
Gọi I là hình chiếu vuông góc của M trên AB.
Xét tam giác vuông BIM và MHB có:
BM chung.
(giả thiết)
Suy ra
Do đó MI = BH không đổi hay M luôn cách AB một khoảng không đổi.
Vậy điểm M luôn luôn nằm trên mặt trụ trục AB và có bán kính bằng BH.
Chương 1. Este - Lipid
Một số vấn đề phát triển và phân bố công nghiệp
ĐỀ THI THỬ THPT QUỐC GIA MÔN NGỮ VĂN
CHƯƠNG VI. LƯỢNG TỬ ÁNH SÁNG
Bài 23. Thực hành: Phân tích sự chuyển dịch cơ cấu ngành trồng trọt