Đề bài
Bảng sau ghi lại số sách mà các bạn học sinh tổ 1 và tổ 2 quyên góp được cho thư viện trường.
Tổ 1 | 10 | 6 | 9 | 7 | 7 | 6 | 9 | 6 | 9 | 1 | 9 | 6 |
Tổ 2 | 6 | 8 | 8 | 7 | 9 | 9 | 7 | 9 | 30 | 7 | 10 | 5 |
a) Sử dụng số trung bình và trung vị, hãy so sánh số sách mà mỗi học sinh tổ 1 và tổ 2 quyên góp được cho thư viện trường.
b) Hãy xác định giá trị ngoại lệ (nếu có) cho mỗi mẫu số liệu. So sánh số sách mà mỗi học sinh tổ 1 và tổ 2 quyên góp được cho thư viện trường sau khi bỏ đi các giá trị ngoại lệ.
Phương pháp giải - Xem chi tiết
Bước 1: Sắp xếp số liệu theo thứ tự không giảm: \({x_1},{x_2},...,{x_n}\)
Khoảng biến thiên \(R = {x_n} - {x_1}\)
Bước 2: Tìm trung vị \({Q_2}\) của mẫu số liệu
Bằng \({x_m}\) nếu \(n = 2m - 1\); là \(\frac{1}{2}({x_m} + {x_{m + 1}})\) nếu \(n = 2m\)
Bước 3: Tìm tứ phân vị
Tính \({Q_1}\)là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\) (không bao gồm trung vị nếu n lẻ)
Tính \({Q_1}\)là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\) (không bao gồm trung vị nếu n lẻ)
Khoảng tứ phân vị: \(\Delta Q = {Q_3} - {Q_1}\)
X là giá trị ngoại lệ nếu \(x > {Q_3} + 1,5{\Delta _Q}\) hoặc \(x < {Q_1} - 1,5{\Delta _Q}\)
Lời giải chi tiết
a)
- Tổ 1:
+ Trung bình của mẫu số liệu là \(\overline x = 7,08\)
+ Số trung vị:
Sắp xếp lại theo thứ tự không giảm ta có bảng sau:
1 | 6 | 6 | 6 | 6 | 7 | 7 | 9 | 9 | 9 | 9 | 10 |
Vì \(n = 12\)là số chẵn nên số trung vị của số sách mà mỗi học sinh tổ 1 quyên góp là: \(\left( {7 + 7} \right):2 = 7\)
- Tổ 2:
+ Trung bình của mẫu số liệu là \(\overline x = 9,58\)
+ Số trung vị:
Sắp xếp lại theo thứ tự không giảm ta có bảng sau:
5 | 6 | 7 | 7 | 7 | 8 | 8 | 9 | 9 | 9 | 10 | 30 |
Vì \(n = 12\)là số chẵn nên số trung vị của số sách mà mỗi học sinh tổ 2 quyên góp là: \(\left( {8 + 8} \right):2 = 8\)
So sánh cả theo số trung bình và trung vị thì số sách các bạn tổ 2 quyên góp nhiều hơn các bạn tổ 1
b)
- Tổ 1:
+ Tứ phân vị: \({Q_2} = 7\); \({Q_1} = \left( {6 + 6} \right):2 = 6;{Q_3} = \left( {9 + 9} \right):2 = 9 \Rightarrow \Delta Q = {Q_3} - {Q_1} = 3\)
+ Ta có \({Q_1} - 1,5.{\Delta _Q} = 6 - 1,5.3 = 1,5\) và \({Q_3} + 1,5.{\Delta _Q} = 9 + 1,5.3 = 13,5\) nên mẫu có giá trị ngoại lệ là 1
+ Bỏ giá trị này, ta có:
6 | 6 | 6 | 6 | 7 | 7 | 9 | 9 | 9 | 9 | 10 |
Khi đó \(\overline x = 7,64\) và \(Me = 7\)
- Tổ 2:
+ Tứ phân vị: \({Q_2} = 8\); \({Q_1} = \left( {7 + 7} \right):2 = 7;{Q_3} = \left( {9 + 9} \right):2 = 9 \Rightarrow \Delta Q = {Q_3} - {Q_1} = 2\)
+ Ta có \({Q_1} - 1,5.{\Delta _Q} = 7 - 1,5.2 = 4\) và \({Q_3} + 1,5.{\Delta _Q} = 9 + 1,5.2 = 12\) nên mẫu có giá trị ngoại lệ là 30
+ Bỏ giá trị này, ta có:
5 | 6 | 7 | 7 | 7 | 8 | 8 | 9 | 9 | 9 | 10 |
Khi đó \(\overline x = 7,73\) và \(Me = 8\)
Vậy sau khi bỏ đi các giá trị ngoại lệ thì khi so sánh theo số trung bình và trung vị thì các bạn tổ 2 vẫn quyên góp được nhiều sách hơn các bạn tổ 1
Đề kiểm tra học kì 2
Chương 8. Địa lí dân cư
Chương VI. Chuyển động tròn
Bài 6. Một số hiểu biết về an ninh mạng
Đề kiếm tra 15 phút
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10