Đề bài
Tìm công thức của hàm số có đồ thị vẽ được ở bài tập 2
Phương pháp giải - Xem chi tiết
Bước 1: Đặt công thức của hàm số theo dạng tổng quát \(y = a{x^2} + bx + c\)
Bước 2: Thay các điểm mà hàm số đi qua và sử dụng các tính chất của hàm số bậc hai để xác định a, b, c
Lời giải chi tiết
Gọi công thức tổng quát của hàm số bậc hai có dạng \(y = a{x^2} + bx + c\) với a, b, c là các số thực và a khác 0
Đồ thị hàm số có đỉnh \(S\left( { - 1; - 3} \right)\) nên ta có : \( - 1 = - \frac{b}{{2a}} \Rightarrow b = 2a\) (1)
Mặt khác đồ thị hàm số cắt trục tung tại điểm \(C\left( {0; - 1} \right)\)nên \(c = - 1\) (2)
Đồ thị hàm số đi qua điểm S nên thay tọa độ điểm S vào ta được phương trình:
\( - 3 = a{\left( { - 1} \right)^2} + b\left( { - 1} \right) + c \Rightarrow a - b + c = - 3\) (3)
Từ (1), (2) và (3) ta tìm được \(a = 2,b = 4\) và \(c = - 1\)
Vậy hàm số cần tìm có công thức là \(y = 2{x^2} + 4x - 1\)
Grammar Reference
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Lịch sử lớp 10
Dục Thúy sơn
Chương VII. Biến dạng của vật rắn. Áp suất chất
Chủ đề 7. Cộng đồng các dân tộc Việt Nam
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10