1. Nội dung câu hỏi
Cho tứ diện ABCD có \(DA \bot \left( {ABC} \right)\), ABC là tam giác cân tại A. Gọi M là trung điểm của BC. Vẽ \(AH \bot MD\) tại H.
a) Chứng minh rằng \(AH \bot \left( {BCD} \right)\).
b) Gọi G, K lần lượt là trọng tâm của tam giác ABC và DBC. Chứng minh rằng \(GK \bot \left( {ABC} \right)\).
2. Phương pháp giải
a) Sử dụng kiến thức về định lí đường thẳng vuông góc với mặt phẳng để chứng minh: Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng \(\left( \alpha \right)\) thì \(d \bot \left( \alpha \right)\).
b) Sử dụng kiến thức về liên hệ giữa tính song song và tính vuông góc của đường thẳng và mặt phẳng: Cho hai đường thẳng song song. Mặt phẳng nào vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.
3. Lời giải chi tiết
a) Vì \(DA \bot \left( {ABC} \right),BC \subset \left( {ABC} \right) \Rightarrow DA \bot BC\)
Tam giác ABC cân tại A nên AM là đường trung tuyến đồng thời là đường cao, suy ra: \(BC \bot AM\)
Vì \(DA \bot BC\), \(BC \bot AM\), DA và AM cắt nhau tại A và nằm trong (DAM) nên \(BC \bot \left( {DAM} \right)\). Lại có, \(AH \subset \left( {DAM} \right) \Rightarrow AH \bot BC\)
Ta có: \(AH \bot MD\), \(AH \bot BC\), MD và BC cắt nhau tại M và nằm trong (BCD) nên \(AH \bot \left( {BCD} \right)\)
b) Tam giác DBC có K là trọng tâm và DM là đường trung tuyến nên \(\frac{{DK}}{{DM}} = \frac{2}{3}\)
Tam giác ABC có G là trọng tâm và AM là đường trung tuyến nên \(\frac{{AG}}{{AM}} = \frac{2}{3}\)
Tam giác ADM có: \(\frac{{DK}}{{DM}} = \frac{{AG}}{{AM}}\left( { = \frac{2}{3}} \right)\) nên KG//AD (định lí Thalès đảo)
Mà \(DA \bot \left( {ABC} \right)\) nên \(GK \bot \left( {ABC} \right)\).
Chuyên đề 1. Một số vấn đề về khu vực Đông Nam Á
Review Unit 4
Unit 2: Leisure time
Bài 6. Tiết 3: Thực hành: Tìm hiểu sự phân hóa lãnh thổ sản xuất của Hoa Kì - Tập bản đồ Địa lí 11
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11