ĐẠI SỐ VÀ GIẢI TÍCH- SBT TOÁN 11

Bài 3.13 trang 118 SBT đại số và giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Cho dãy số \(\left( {{u_n}} \right)\) với  \(\left( {{u_n}} \right) = 1 + \left( {n - 1} \right){.2^n}.\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Viết năm số hạng đầu của dãy số

Phương pháp giải:

Cho \(n\) nhận lần lượt các giá trị \(1,2,3,4,5\) suy ra \(5\) số hạng đầu

Lời giải chi tiết:

Ta có \(5\) số hạng đầu của dãy là \(1;5;17;49;129\)

LG b

Tìm công thức truy hồi

Phương pháp giải:

Tìm hiệu \({u_{n + 1}} - {u_n}.\)

Lời giải chi tiết:

\({u_{n + 1}} - {u_n}\)  \( = 1 + n{.2^{n + 1}} - 1 - \left( {n - 1} \right){2^n}\) \( = 2n{.2^n} - \left( {n - 1} \right){2^n}\) \( = {2^n}\left( {n + 1} \right)\)

\( \Rightarrow {u_{n + 1}} = {u_n} + {2^n}\left( {n + 1} \right)\)

Vậy \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = {u_n} + \left( {n + 1} \right){2^n}{\rm{ voi }}n \ge 1.\end{array} \right.\)

LG c

Chứng minh \(\left( {{u_n}} \right)\) là dãy số tăng và bị chặn dưới.

Phương pháp giải:

Xét dấu \({u_{n + 1}} - {u_n}\) và kết luận.

Lời giải chi tiết:

Dễ thấy \({u_{n + 1}} - {u_n} = \left( {n + 1} \right){.2^n} > 0\) nên dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.

Do đó \({u_n} \ge {u_1} = 1,\forall n\) nên dãy đã cho bị chặn dưới.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved