Đề bài
Hãy chọn dãy số bị chặn trong các dãy số \(\left( {{u_n}} \right)\) sau:
A. \({u_n} = {n^2} + n - 1\) B. \({u_n} = {3^n}\)
C. \({u_n} = \sin n + \cos n\)
D. \({u_n} = - 3{n^2} + 1\)
Phương pháp giải - Xem chi tiết
Đánh giá số hạng tổng quát của từng dãy số và nhận xét.
Lời giải chi tiết
Đáp án A: Dãy số không bị chặn trên vì hàm số bậc hai có hệ số \(a = 1 > 0\) nên không có số \(M\) nào để \({u_n} \le M,\forall n\).
Đáp án B: Dễ thấy \({3^n} > 0\) nhưng không có số \(M\) nào để \({3^n} \le M\).
Đáp án C: Ta có: \(\sin n + \cos n = \sqrt 2 \sin \left( {n + \dfrac{\pi }{4}} \right)\).
Mà \( - 1 \le \sin \left( {n + \dfrac{\pi }{4}} \right) \le 1\) nên \( - \sqrt 2 \le \sqrt 2 \sin \left( {n + \dfrac{\pi }{4}} \right) \le \sqrt 2 \).
Do đó dãy số \(\left( {{u_n}} \right)\) bị chặn.
Đáp án D: Hàm số bậc hai có hệ số \(a < 0\) thì không có số \(m\) nào để \({u_n} \ge m,\forall n\).
Chọn C.
Chuyên đề 1. Tập nghiên cứu và viết báo cáo về một vấn đề văn học trung đại Việt Nam
Chương 4. Sinh sản ở sinh vật
Phần 1. Một số vấn đề về kinh tế - xã hội thế giới
Chuyên đề 2: Tìm hiểu ngôn ngữ trong đời sống xã hội hiện đại
Phần 2. Địa lí khu vực và quốc gia
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11