Bài 1. Đại cương về đường thằng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi và bài tập
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Đề toán tổng hợp
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi trắc nghiệm
Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến
Bài 3. Phép đối xứng trục
Bài 4. Phép đối xứng tâm
Bài 5. Phép quay
Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
Bài 7. Phép vị tự
Bài 8. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi và bài tập
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Đề toán tổng hợp
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi trắc nghiệm
Đề bài
Tứ diện SABC có ba đỉnh A, B, C tạo thành tam giác vuông cân đỉnh B và , có cạnh SA vuông góc với mặt phẳng (ABC) và SA = a.
a) Chứng minh mặt phẳng (SAB) vuông góc với mặt phẳng (SBC).
b) Trong mặt phẳng (SAB) vẽ AH vuông góc với SB tại H, chứng minh \(AH \bot \left( {SBC} \right)\)
c) Tính độ dài đoạn AH.
d) Từ trung điểm O của đoạn AC vẽ OK vuông góc với (SBC) cắt (SBC) tại K. Tính độ dài đoạn OK.
Phương pháp giải - Xem chi tiết
Sử dụng lý thuyết: "Hai mặt phẳng vuông góc với nhau, nếu có đường thẳng nằm trong mặt phẳng này mà vuông góc với giao tuyến thì đường thẳng đó sẽ vuông góc với mặt phẳng còn lại".
Lời giải chi tiết
a)
\(\displaystyle \left. \matrix{
BC \bot AB \hfill \cr
BC \bot SA \hfill \cr} \right\} \Rightarrow BC \bot \left( {SAB} \right) \) \(\displaystyle \Rightarrow \left( {SBC} \right) \bot \left( {SAB} \right)\)
b) \(\displaystyle AH \bot SB\) mà SB giao tuyến của hai mặt phẳng vuông góc là (SBC) và (SAB) nên \(\displaystyle AH \bot \left( {SBC} \right)\).
c) Xét tam giác vuông SAB với đường cao AH ta có:
\(\displaystyle {1 \over {A{H^2}}} = {1 \over {A{S^2}}} + {1 \over {A{B^2}}} \) \(\displaystyle = {1 \over {{a^2}}} + {1 \over {2{a^2}}} = {3 \over {2{a^2}}}\)
Vậy \(\displaystyle AH = {{a\sqrt 6 } \over 3}\)
d) Vì \(\displaystyle OK \bot \left( {SBC} \right)\) mà \(\displaystyle AH \bot \left( {SBC} \right)\) nên \(\displaystyle OK\parallel AH\), ta có K thuộc CH.
\(\displaystyle OK = {{AH} \over 2} = {{a\sqrt 6 } \over 6}\).
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11
Unit 6: Preserving our heritage
Chủ đề 2. Cảm ứng ở sinh vật
Chương V. Giới thiệu chung về cơ khí động lực
Chủ đề 5: Đạo đức kinh doanh
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11