Bài 1. Đại cương về đường thằng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi và bài tập
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Đề toán tổng hợp
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi trắc nghiệm
Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến
Bài 3. Phép đối xứng trục
Bài 4. Phép đối xứng tâm
Bài 5. Phép quay
Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
Bài 7. Phép vị tự
Bài 8. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi và bài tập
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Đề toán tổng hợp
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi trắc nghiệm
Đề bài
Trên mặt phẳng \(\left( \alpha \right)\) cho hình vuông ABCD. Các tia \(Ax,By,Cz,Dt\) vuông góc với mặt phẳng \(\left( \alpha \right)\) và nằm về một phía đối với mặt phẳng \(\left( \alpha \right)\). Một mặt phẳng \(\left( \beta \right)\) lần lượt cắt \(Ax,By,Cz,Dt\) tại A’,B’,C’,D’.
a) Tứ giác A’,B’,C’,D’ là hình gì? Chứng minh rằng .
b) Chứng minh rằng điều kiện để tứ giác A’,B’,C’,D’ là hình thoi là nó có hai đỉnh đối diện cách đều mặt phẳng \(\left( \alpha \right)\).
c) Chứng minh rằng điều kiện để tứ giác A’,B’,C’,D’ là hình chữ nhật là nó có hai đỉnh kề nhau cách đều mặt phẳng \(\left( \alpha \right)\).
Lời giải chi tiết
a) Ta có hai mặt phẳng song song là:
\(\left( {Ax,AD} \right)\parallel \left( {By,BC} \right)\)
Hai mặt phẳng này bị cắt bởi mặt phẳng \(\left( \beta \right)\) nên ta suy ra các giao tuyến của chúng phải song song nghĩa là \(A'D'\parallel B'C'\).
Tương tự ta chứng minh được \(A'B'\parallel D'C'\). Vậy A’,B’,C’,D’ là hình bình hành. Các hình thang AA’C’C và BB’D’D đều có OO’ là đường trung bình trong đó O là tâm của hình vuông ABCD và O’ là tâm của hình bình hành A’,B’,C’,D’. Do đó: \(AA' + CC' = BB' + DD' = 2OO'\)
b) Muốn hình bình hành A’,B’,C’,D’ là hình thoi ta cần phải có A’C’⊥B’D’. Ta đã có AC⊥BD. Người ta chứng minh được rằng hình chiếu vuông góc của một góc vuông là một góc vuông khi và chỉ khi góc vuông đem chiếu có ít nhất một cạnh song song với mặt phẳng chiếu hay nằm trong mặt chiếu. Vậy A’,B’,C’,D’ là hình thoi khi và chỉ khi A’C’ hoặc B’D’ song song với mặt phẳng \(\left( \alpha \right)\) cho trước. Khi đó ta có AA’ = CC’ hoặc BB’ = DD’.
c) Muốn hình bình hành A’,B’,C’,D’ là hình chữ nhật ta cần có A’B’⊥B’C’, nghĩa là A’B’ hoặc B’C’ phải song song với mặt phẳng \(\left( \alpha \right)\). Khi đó ta có AA’ = BB’ hoặc BB’ = CC’, nghĩa là hình bình hành A’,B’,C’,D’ có hai đỉnh kề nhau cách đều mặt phẳng \(\left( \alpha \right)\) cho trước.
Chương 6. Chương trình con và lập trình có cấu trúc
Chủ đề 4: Kĩ thuật bắt bóng của thủ môn và chiến thuật phòng thủ
Chương 1. Trao đổi chất và chuyển hóa năng lượng ở sinh vật
SGK Ngữ Văn 11 - Cánh Diều tập 1
Bài 7: Tiết 3. Thực hành: Tìm hiểu về Liên minh châu Âu - Tập bản đồ Địa lí 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11