1. Nội dung câu hỏi
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Gọi H và K lần lượt là hình chiếu của A trên SB và SD. Chứng minh rằng:
a) \(\left( {SBC} \right) \bot \left( {SAB} \right)\);
b) \(\left( {SCD} \right) \bot \left( {SAD} \right)\);
c) \(\left( {SBD} \right) \bot \left( {SAC} \right)\);
d) \(\left( {SAC} \right) \bot \left( {AHK} \right)\).
2. Phương pháp giải
+ Sử dụng kiến thức về điều kiện để hai mặt phẳng vuông góc: Điều kiện cần và đủ để hai mặt phẳng vuông góc là mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.
+ Sử dụng kiến thức về tính chất cơ bản của hai mặt phẳng vuông góc: Nếu hai mặt phẳng cắt nhau cùng vuông góc với nhau mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba.
d) Sử dụng kiến thức về tính chất cơ bản của hai mặt phẳng vuông góc: Nếu hai mặt phẳng vuông góc với nhau thì bất cứ đường thẳng nào nằm trong mặt phẳng này và vuông góc với giao tuyến cũng vuông góc với mặt phẳng kia.
3. Lời giải chi tiết
Vì hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD), và SA là giao tuyến của hai mặt phẳng (SAB) và (SAD) nên \(SA \bot \left( {ABCD} \right)\)
a) Vì ABCD là hình vuông nên \(AB \bot BC\).
Mà \(SA \bot \left( {ABCD} \right),BC \subset \left( {ABCD} \right) \Rightarrow SA \bot BC\)
Do đó, \(BC \bot \left( {SAB} \right)\). Lại có: \(BC \subset \left( {SBC} \right) \Rightarrow \left( {SBC} \right) \bot \left( {SAB} \right)\)
b) Vì ABCD là hình vuông nên \(AD \bot DC\).
Mà \(SA \bot \left( {ABCD} \right),DC \subset \left( {ABCD} \right) \Rightarrow SA \bot DC\)
Do đó, \(DC \bot \left( {SAD} \right)\). Lại có: \(DC \subset \left( {SDC} \right) \Rightarrow \left( {SCD} \right) \bot \left( {SAD} \right)\)
c) Vì ABCD là hình vuông nên \(AC \bot DB\).
Mà \(SA \bot \left( {ABCD} \right),DB \subset \left( {ABCD} \right) \Rightarrow SA \bot DB\)
Do đó, \(DB \bot \left( {SAC} \right)\). Lại có: \(DB \subset \left( {SDB} \right) \Rightarrow \left( {SBD} \right) \bot \left( {SAC} \right)\)
d) Vì \(\left( {SBC} \right) \bot \left( {SAB} \right)\), SB là giao tuyến của (SBC) và (SAB), \(AH \bot SB\) nên \(HA \bot \left( {SBC} \right) \Rightarrow AH \bot SC\)
Vì \(\left( {SCD} \right) \bot \left( {SAD} \right)\), SD là giao tuyến của (SDC) và (SAD), \(AK \bot SD\) nên \(KA \bot \left( {SDC} \right) \Rightarrow AK \bot SC\)
Do đó, \(SC \bot \left( {AHK} \right)\). Mà \(SC \subset \left( {SAC} \right) \Rightarrow \left( {SAC} \right) \bot \left( {AHK} \right)\).
Chủ đề 3: Kĩ thuật đá bóng
Chương 4: Hydrocarbon
Chủ đề 3. Thực hiện các hoạt động xây dựng và phát triển nhà trường
B
Tải 20 đề kiểm tra 15 phút - Chương 3
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11