1. Nội dung câu hỏi
Cho hình chóp đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng a và \(SA = a\sqrt 2 \).
a) Tính theo a thể tích khối chóp \(S.ABCD.\)
b) Tính theo a khoảng cách giữa hai đường thẳng \(AD\) và \(SB\).
2. Phương pháp giải
a) Gọi \(O\) là giao điểm của \(AC\) và \(BD\).
Vì \(S.ABCD\) là hình chóp đều nên \(SO \bot \left( {ABCD} \right)\).
Áp dụng định lý Pytago tính : \(SO = \sqrt {S{A^2} - O{A^2}} \).
Thể tích khối chóp \(S.ABCD\) bằng \(\frac{1}{3} \cdot {S_{ABCD}} \cdot SO\)
b) Vì \(AD//\left( {SBC} \right)\) và mặt phẳng \(\left( {SBC} \right)\) chứa \(SB\) nên
\(d\left( {AD,SB} \right) = d\left( {AD,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right)\)
\(d\left( {A,\left( {SBC} \right)} \right) = 2.d\left( {O,\left( {SBC} \right)} \right)\).
Kẻ \(OM\) vuông góc với \(BC\) tại \(M,OH\) vuông góc với \(SM\) tại \(H\) thì
\(BC \bot \left( {SOM} \right) \Rightarrow BC \bot OH \Rightarrow OH \bot \left( {SBC} \right) \Rightarrow d\left( {O,\left( {SBC} \right)} \right) = OH.\)
Tam giác \(SOM\)vuông tại \(O\), có đường cao \(OH\), khi đó \(OH = \frac{{SO \cdot OM}}{{SM}}\).
Suy ra \(d\left( {AD,SB} \right) = 2.OH\).
3. Lời giải chi tiết
a) Gọi \(O\) là giao điểm của \(AC\) và \(BD\).
Vì \(S.ABCD\) là hình chóp đều nên \(SO \bot \left( {ABCD} \right)\).
Ta có tam giác \(SAO\) vuông tại \(O\) nên theo định lí Pythagore: \(SO = \sqrt {S{A^2} - O{A^2}} = \frac{{a\sqrt 6 }}{2}\).
Thể tích khối chóp \(S.ABCD\) bằng \(\frac{1}{3} \cdot {S_{ABCD}} \cdot SO = \frac{{{a^3}\sqrt 6 }}{6}.\)
b) Vì \(AD//\left( {SBC} \right)\) và mặt phẳng \(\left( {SBC} \right)\) chứa \(SB\) nên
\(d\left( {AD,SB} \right) = d\left( {AD,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right)\)
Đường thẳng \(AO\) cắt mặt phẳng \(\left( {SBC} \right)\) tại \(C\) và \(O\) là trung điểm của đoạn \(AC\) nên \(d\left( {A,\left( {SBC} \right)} \right) = 2.d\left( {O,\left( {SBC} \right)} \right)\).
Kẻ \(OM\) vuông góc với \(BC\) tại \(M,OH\) vuông góc với \(SM\) tại \(H\) thì
\(BC \bot \left( {SOM} \right) \Rightarrow BC \bot OH \Rightarrow OH \bot \left( {SBC} \right) \Rightarrow d\left( {O,\left( {SBC} \right)} \right) = OH.\)
Tam giác \(SOM\)vuông tại \(O\), có đường cao \(OH\), khi đó \(OH = \frac{{SO \cdot OM}}{{SM}} = \frac{{a\sqrt {42} }}{{14}}\).
Vậy \(d\left( {AD,SB} \right) = 2.OH = \frac{{a\sqrt {42} }}{7}\).
Chủ đề 2. Sóng
Review Unit 7
Bài 7. Pháp luật về quản lí vũ khí, vật liệu nổ, công cụ hỗ trợ
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Địa lí lớp 11
Bài 1: Mở đầu về cân bằng hóa học
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11