1. Nội dung câu hỏi
Tìm tập xác định của các hàm số sau:
a) \(y = \sqrt {1 + \sin 3x} \)
b) \(y = \frac{{\sin 2x}}{{\sqrt {1 - \cos x} }}\)
c) \(y = \frac{{\sqrt {1 + \cos 2x} }}{{\sin x}}\)
d) \(y = \frac{1}{{\sin x + \cos x}}\)
e) \(y = \frac{1}{{1 + \sin x\cos x}}\)
g) \(y = \sqrt {\cos x - 1} \)
2. Phương pháp giải
a) Hàm số xác định khi \(1 + \sin 3x \ge 0\).
Xác định miền giá trị của \(1 + \sin 3x\) và kết luận.
b) Hàm số xác định khi \(\left\{ \begin{array}{l}1 - \cos x \ge 0\\\sqrt {1 - \cos x} \ne 0\end{array} \right. \Leftrightarrow 1 - \cos x > 0\).
Chứng minh \(1 - \cos x \ge 0\), rồi chỉ ra điều kiện xác định của hàm số sẽ là \(1 - \cos x \ne 0\).
c) Hàm số xác định khi \(\left\{ \begin{array}{l}1 + \cos 2x \ge 0\\\sin x \ne 0\end{array} \right. \Leftrightarrow \sin x \ne 0\).
Tìm các giá trị của \(x\) để \(\sin x \ne 0\), và kết luận.
d) Hàm số xác định khi: \(\sin x + \cos x \ne 0\).
Áp dụng công thức \(\sin \left( {x + \frac{\pi }{4}} \right) = \sin x\cos \frac{\pi }{4} + \sin \frac{\pi }{4}\cos x = \frac{1}{{\sqrt 2 }}\left( {\sin x + \cos x} \right)\) để đưa điều kiện xác định của hàm số trở thành \(\sin \left( {x + \frac{\pi }{4}} \right) \ne 0\).
Do đó \(x + \frac{\pi }{4} \ne k\pi \Leftrightarrow x \ne - \frac{\pi }{4} + k\pi \)
e) Hàm số xác định khi \(1 + \sin x\cos x \ge 0\)
Chứng minh rằng với \(\forall x \in \mathbb{R}\) thì \(\sin x\cos x = \frac{{\sin 2x}}{2}\)
Từ đó suy ra \(1 + \sin x\cos x > 0\).
f) Hàm số xác định khi \(\cos x - 1 \ge 0 \Leftrightarrow \cos x \ge 1\).
Do \(\cos x \le 1\) với \(\forall x \in \mathbb{R}\), nên điều kiện xác định tương đương với \(\cos x = 1\).
3. Lời giải chi tiết
a) Hàm số xác định khi \(1 + \sin 3x \ge 0\).
Với \(\forall x \in \mathbb{R}\), ta thấy \(\sin 3x \ge - 1 \Leftrightarrow 1 + \sin 3x \ge 0\).
Do đó, tập xác định của hàm số là \(D = \mathbb{R}\).
b) Hàm số xác định khi \(\left\{ \begin{array}{l}1 - \cos x \ge 0\\\sqrt {1 - \cos x} \ne 0\end{array} \right. \Leftrightarrow 1 - \cos x > 0\).
Ta thấy với \(\forall x \in \mathbb{R}\), \(\cos x \le 1 \Leftrightarrow - \cos x \ge - 1 \Leftrightarrow 1 - \cos x \ge 0\), nên điều kiện xác định của hàm số sẽ tương đương với \(1 - \cos x \ne 0 \Leftrightarrow \cos x \ne 1 \Leftrightarrow x \ne k2\pi \) \(\left( {k \in \mathbb{Z}} \right)\).
Do đó, tập xác định của hàm số là \(D = \mathbb{R} \setminus \left\{ {k2\pi |k \in \mathbb{Z}} \right\}\).
c) Hàm số xác định khi \(\left\{ \begin{array}{l}1 + \cos 2x \ge 0\\\sin x \ne 0\end{array} \right. \Leftrightarrow \sin x \ne 0\).
Ta có \(\sin x \ne 0 \Leftrightarrow x \ne k\pi \) \(\left( {k \in \mathbb{Z}} \right)\).
Do đó, tập xác định của hàm số là \(D = \mathbb{R} \setminus \left\{ {k\pi |k \in \mathbb{Z}} \right\}\).
d) Hàm số xác định khi: \(\sin x + \cos x \ne 0\).
Ta có \(\sin \left( {x + \frac{\pi }{4}} \right) = \sin x\cos \frac{\pi }{4} + \sin \frac{\pi }{4}\cos x = \frac{1}{{\sqrt 2 }}\left( {\sin x + \cos x} \right)\)
Do đó, điều kiện xác định của hàm số tương đương với:
\(\frac{1}{{\sqrt 2 }}\left( {\sin x + \cos x} \right) \ne 0 \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) \ne 0 \Leftrightarrow x + \frac{\pi }{4} \ne k\pi \Leftrightarrow x \ne - \frac{\pi }{4} + k\pi \) \(\left( {k \in \mathbb{Z}} \right)\)
Do đó, tập xác định của hàm số là \(D = \mathbb{R} \setminus \left\{ { - \frac{\pi }{4} + k\pi |k \in \mathbb{Z}} \right\}\)
e) Hàm số xác định khi \(1 + \sin x\cos x \ge 0\)
Ta thấy với \(\forall x \in \mathbb{R}\) thì \(\sin 2x = 2\sin x\cos x \Leftrightarrow \sin x\cos x = \frac{{\sin 2x}}{2}\).
Do \(\sin 2x \ge - 1 \Rightarrow \frac{{\sin 2x}}{2} \ge \frac{{ - 1}}{2} \Rightarrow 1 + \frac{{\sin 2x}}{2} \ge 1 + \frac{{ - 1}}{2} = \frac{1}{2} > 0\)
Từ đó suy ra \(1 + \sin x\cos x > 0\).
Vậy tập xác định của hàm số là \(D = \mathbb{R}\).
f) Hàm số xác định khi \(\cos x - 1 \ge 0 \Leftrightarrow \cos x \ge 1\).
Do \(\cos x \le 1\) với \(\forall x \in \mathbb{R}\), nên điều kiện xác định tương đương với \(\cos x = 1\).
\( \Leftrightarrow x = k2\pi \) \(\left( {k \in \mathbb{Z}} \right)\).
Vậy tập xác định của hàm số là \(D = \left\{ {k2\pi |k \in \mathbb{Z}} \right\}\).
Bài 17: Phenol
Bài 7: Sulfuric acid và muối sulfate
Chủ đề 2. Công nghệ giống vật nuôi
Chuyên đề 3. Cuộc cách mạng công nghiệp lần thứ tư (4.0)
Chương 1: Cân bằng hóa học
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11