1. Nội dung câu hỏi
Cho m là một số thực. Biết \(\mathop {\lim }\limits_{x \to - \infty } \left[ {\left( {m - x} \right)\left( {mx + 1} \right)} \right] = - \infty \). Xác định dấu của m.
2. Phương pháp giải
- Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.
- Với c là hằng số, ta có: \(\mathop {\lim }\limits_{x \to + \infty } c = c,\mathop {\lim }\limits_{x \to - \infty } c = c\)
- Với k là một số nguyên dương, ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{1}{{{x^k}}} = 0,\mathop {\lim }\limits_{x \to - \infty } \frac{1}{{{x^k}}} = 0\)
3. Lời giải chi tiết
Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \left[ {\left( {m - x} \right)\left( {mx + 1} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } {x^2}\left( {\frac{m}{x} - 1} \right)\left( {m + \frac{1}{x}} \right) = - m\)
Để \(\mathop {\lim }\limits_{x \to - \infty } \left[ {\left( {m - x} \right)\left( {mx + 1} \right)} \right] = - \infty \) thì \(m > 0\).
Unit 1: Generations
Tóm tắt, bố cục, nội dung chính các tác phẩm SGK Văn 11 - Tập 1
Chủ đề 3: Kĩ thuật bỏ nhỏ và chiến thuật phân chia khu vực đánh cầu
Chủ đề 3. Quá trình giành độc lập dân tộc của các quốc gia Đông Nam Á
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương VII - Hóa học 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11