Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Đề bài
Điền vào các chỗ trống (...) trong phép chứng minh sau:
Số \(\sqrt 2 \) là số vô tỉ.
Giả sử \(\sqrt 2 \) không phải là số vô tỉ thì phải tồn tại các số nguyên m và n sao cho \(\sqrt 2 = \dfrac{m}{n},\) trong đó \(n > 0\) còn hai số \(m\) và \(n\) không có ước chung nào khác 1 và \(-1\) (hai số \(m\) và \(n\) nguyên tố cùng nhau).
Khi đó, ta có: ... hay \(2{n^2} = {m^2}\) (1).
Kết quả (1) chứng tỏ \(m\) là số chẵn, nghĩa là \(m = 2p\) với \(p\) là số nguyên.
Thay \(m = 2p\) vào (1) ta được: ... hay \({n^2} = 2{p^2}\) (2)
Kết quả (2) chứng tỏ \(n\) phải là số chẵn.
Hai số \(m\) và \(n\) đều là số chẵn, trái với giả thiết \(m\) và \(n\) không có ước chung nào khác \(1\) và \(-1\).
Vậy \(\sqrt 2 \) là số vô tỉ.
Phương pháp giải - Xem chi tiết
Áp dụng: Với \(A \ge 0;m \ge 0,n > 0\)
\(A = \dfrac{m}{n} \Rightarrow {A^2} = \dfrac{{{m^2}}}{{{n^2}}}\).
Lời giải chi tiết
Số \(\sqrt 2 \) là số vô tỉ.
Giả sử \(\sqrt 2 \) không phải là số vô tỉ thì phải tồn tại các số nguyên m và n sao cho \(\sqrt 2 = \dfrac{m}{n},\) trong đó \(n > 0\) còn hai số \(m\) và \(n\) không có ước chung nào khác 1 và \(-1\) (hai số \(m\) và \(n\) nguyên tố cùng nhau).
Khi đó, ta có: \({(\sqrt 2 )^2} = \dfrac{{{m^2}}}{{{n^2}}}\) hay \(2{n^2} = {m^2}\) (1).
Kết quả (1) chứng tỏ \(m\) là số chẵn, nghĩa là \(m = 2p\) với \(p\) là số nguyên.
Thay \(m = 2p\) vào (1) ta được: \(2{n^2} = {\left( {2p} \right)^2}\) hay \({n^2} = 2{p^2}\) (2)
Kết quả (2) chứng tỏ \(n\) phải là số chẵn.
Hai số \(m\) và \(n\) đều là số chẵn, trái với giả thiết \(m\) và \(n\) không có ước chung nào khác \(1\) và \(-1\).
Vậy \(\sqrt 2 \) là số vô tỉ.
QUYỂN 4. LẮP ĐẶT MẠNG ĐIỆN TRONG NHÀ
Unit 5: Wonders of Viet Nam
Bài 23
Bài 33
Đề thi vào 10 môn Toán Bến Tre