Giải bài 54 trang 63 SBT toán 10 - Cánh diều

Đề bài

Quan sát chiếc Cổng Vàng (Golden Gate bridge) ở Hình 26. Độ cao \(h\) (feet) tính từ mặt cầu đến các điểm trên dây treo ở phần giữa hai trụ cầu được xác định bởi công thức \(h\left( x \right) = \frac{1}{{9000}}{x^2} - \frac{7}{{15}}x + 500\), trong đó \(x\) (feet) là khoảng cách từ trụ cầu bên trái đến điểm tương ứng trên dây treo

a) Xác định độ cao của trụ cầu so với mặt cầu theo đơn vị feet.

b) Xác định khoảng cách giữa hai trụ cầu theo đơn vị feet, biết rằng hai trụ cầu này có độ cao bằng nhau

Phương pháp giải - Xem chi tiết

Từ công thức ta tính toán các yêu cầu đề bài

Parabol \(y = a{x^2} + bx + c\): có trục đối xứng là đường thẳng \(x =  - \frac{b}{{2a}}\)

Lời giải chi tiết

a) Độ cao của trụ cầu ứng với độ cao h tại \(x = 0\)

Tại \(x = 0\) thì \(h\left( 0 \right) = \frac{1}{{9000}}.0 - \frac{7}{{15}}.0 + 500 = 500\) (feet)

Vậy độ cao của trụ cầu so với mặt cầu là 500 feet.

b)

Dễ thấy hai đỉnh trụ cầu đối xứng với nhau qua trục đối xứng của parabol \(h(x)\).

Xác định trục đối xứng của parabol: \(x = \frac{{ - b}}{{2a}} =  - \frac{{ - \frac{7}{{15}}}}{{2.\frac{1}{{9000}}}} = 2100\)

Khoảng cách giữa hai trụ cầu là \(2.2100 = 4200\) (feet)

Cách 2:

Do hai trụ cầu cao bằng nhau nên độ cao của trụ cầu bên phải cũng là 500 feet.

Khoảng cách giữa hai trụ cầu chính là hoành độ (khác 0) của trụ cầu bên phải.

Ta tìm \(x \ne 0\) sao cho \(h(x) = 500\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\\frac{1}{{9000}}{x^2} - \frac{7}{{15}}x + 500 = 500\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\\frac{1}{{9000}}{x^2} - \frac{7}{{15}}x = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\\frac{1}{{9000}}x - \frac{7}{{15}} = 0\end{array} \right. \Leftrightarrow x = \frac{7}{{15}}:\frac{1}{{9000}} = 4200\end{array}\)

Vậy khoảng cách giữa hai trụ là 4200 feet.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved