Đề bài
Một máy bay đang bay từ hướng đông sang hướng tây với tốc độ 650 km/h thì gặp luồng gió thổi từ hướng đông bắc sang hướng tây nam với tốc độ 35 km/h. Máy bay bị thay đổi vận tốc sau khi gặp gió thổi. Tìm tốc độ mới của máy bay (làm tròn kết quả đến hàng phần mười theo đơn vị km/h).
Phương pháp giải - Xem chi tiết
Bước 1: Đặt \(\overrightarrow {{v_0}} \) là vận tốc của máy bay khi không có gió, tính độ dài vectơ \(\overrightarrow {{v_0}} \); \(\overrightarrow {{v_1}} \) là vận tốc của gió, tính độ dài vectơ \(\overrightarrow {{v_1}} \); \(\overrightarrow {{v_2}} \) là vận tốc của máy bay khi có gió
Bước 2: Tìm mối liên hệ giữa \(\overrightarrow {{v_0}} \); \(\overrightarrow {{v_1}} \); \(\overrightarrow {{v_2}} \)
Bước 3: Sử dụng các quy tắc vectơ và tích vô hướng của hai vectơ để tính độ dài vectơ \(\overrightarrow {{v_2}} \)
Lời giải chi tiết
Gọi \(\overrightarrow {{v_0}} \) là vận tốc của máy bay khi không có gió \( \Rightarrow \left| {\overrightarrow {{v_0}} } \right| = 650\) (km/h)
\(\overrightarrow {{v_1}} \) là vận tốc của gió \( \Rightarrow \left| {\overrightarrow {{v_1}} } \right| = 35\) (km/h)
\(\overrightarrow {{v_2}} \) là vận tốc của máy bay khi có gió
Theo giả thiết, \(\overrightarrow {{v_2}} = \overrightarrow {{v_0}} + \overrightarrow {{v_1}} \) \( \Rightarrow {\left| {\overrightarrow {{v_2}} } \right|^2} = {\overrightarrow {{v_2}} ^2} = {\left( {\overrightarrow {{v_0}} + \overrightarrow {{v_1}} } \right)^2}\)\( = {\left| {\overrightarrow {{v_0}} } \right|^2} + {\left| {\overrightarrow {{v_1}} } \right|^2} + 2\overrightarrow {{v_0}} .\overrightarrow {{v_1}} \)
\( = {\left| {\overrightarrow {{v_0}} } \right|^2} + {\left| {\overrightarrow {{v_1}} } \right|^2} + 2\left| {\overrightarrow {{v_0}} } \right|.\left| {\overrightarrow {{v_1}} } \right|.\cos \left( {\overrightarrow {{v_0}} ,\overrightarrow {{v_1}} } \right)\)
Mà \(\left( {\overrightarrow {{v_0}} ,\overrightarrow {{v_1}} } \right) = {45^0}\) nên \({\left| {\overrightarrow {{v_0}} } \right|^2} + {\left| {\overrightarrow {{v_1}} } \right|^2} + 2\left| {\overrightarrow {{v_0}} } \right|.\left| {\overrightarrow {{v_1}} } \right|.\cos \left( {\overrightarrow {{v_0}} ,\overrightarrow {{v_1}} } \right) = {650^2} + {35^2} + 2.650.35.\cos {45^0}\)\( \approx 455898,36\)
\( \Rightarrow \left| {\overrightarrow {{v_2}} } \right| \approx 675,2\) (km/h)
Vậy tốc độ mới của máy bay là 675,2 km/h
Bài 5. Bảo vệ an ninh quốc gia và bảo đảm trật tự, an toàn xã hội
Chuyên đề 3: Ba đường conic và ứng dụng
Phần 1. Sinh học tế bào
Phần 2. Địa lí tự nhiên
Unit 5: The environment
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10