Giải bài 72 trang 107 SBT toán 10 - Cánh diều

Đề bài

Cho tam giác ABCAB = 4, AC = 6, \(\widehat {BAC}\) = 60°. Tính (làm tròn kết quả đến hàng đơn vị):

a) Độ dài cạnh BC và độ lớn góc B   

b) Bán kính đường tròn ngoại tiếp R

c) Diện tích của tam giác ABC

d) Độ dài đường cao xuất phát tử A

e) \(\overrightarrow {AB.} \overrightarrow {AC} ,\overrightarrow {AM} .\overrightarrow {AC} \) với M là trung điểm của BC

Phương pháp giải - Xem chi tiết

Bước 1: Sử dụng định lí cosin để tính độ dài BC và góc B của ∆ABC

Bước 2: Sử dụng định lí sin để tính bán kính đường tròn ngoại tiếp R của ∆ABC

Bước 3: Sử dụng công thức \(S = \frac{1}{2}AB.AC.\sin A\) để tính diện tích của tam giác ABC

Bước 4: Sử dụng giá trị lượng giác của góc nhọn để tính độ dài đường cao AH

Bước 5: Sử dụng định nghĩa tích vô hướng của hai vectơ và tính chất trung điểm của đoạn thẳng để tính \(\overrightarrow {AB.} \overrightarrow {AC} ,\overrightarrow {AM} .\overrightarrow {AC} \)

Lời giải chi tiết

a) Áp dụng định lí cosin cho ∆ABC ta có:

+ \(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\)\( = {4^2} + {6^2} - 2.4.6.\cos {60^0} = 28\) \( \Rightarrow BC = 2\sqrt 7 \)

+ \(\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2.AB.BC}} \Rightarrow \widehat B \approx {79^0}\)

b) Áp dụng định lí sin cho ∆ABC ta có: \(\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{5}{{2.\sin {{60}^0}}} \approx 3\)

c) Diện tích tam giác ABC là: \({S_{ABC}} = \frac{1}{2}AB.AC.\sin A = \frac{1}{2}.4.6.\sin {60^0} \approx 10\)

d) Gọi AH là một đường cao của tam giác ABC

Ta có: \({S_{ABC}} = \frac{1}{2}AH.BC \Rightarrow AH = \frac{{2{S_{ABC}}}}{{BC}} \approx 4\)

e) Ta có:

+\(\overrightarrow {AB.} \overrightarrow {AC}  = AB.AC.\cos \widehat {BAC} = 4.6.\cos {60^0} = 12\)

+ Do M là trung điểm BC nên \(\overrightarrow {AM}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\)

 \(\overrightarrow {AM} .\overrightarrow {AC}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right).\overrightarrow {AC}  = \frac{1}{2}\overrightarrow {AB} .\overrightarrow {AC}  + \frac{1}{2}{\overrightarrow {AC} ^2} = \frac{1}{2}.12 + \frac{1}{2}{.6^2} = 24\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved