1. Nội dung câu hỏi
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,{\rm{ }}N,{\rm{ }}P\) lần lượt là trung điểm của các cạnh \(SA,{\rm{ }}BC,{\rm{ }}CD\).
a) Xác định giao điểm của đường thẳng \(NP\) với mặt phẳng \(\left( {SAB} \right)\).
b) Xác định giao tuyến của mặt phẳng \(\left( {MNP} \right)\) với các mặt phẳng \(\left( {SAB} \right),{\rm{ }}\left( {SAD} \right),{\rm{ }}\left( {SBC} \right){\rm{, }}\left( {SCD} \right)\).
2. Phương pháp giải
a) Để xác định giao điểm của đường thẳng \(NP\) và mặt phẳng \(\left( {SAB} \right)\), ta cần chọn một đường thẳng trong mặt phẳng \(\left( {SAB} \right)\), rồi tìm giao điểm của đường thẳng đó với đường thẳng \(NP\).
b) Để xác định giao tuyến của hai mặt phẳng, ta cần tìm hai điểm chung của hai mặt phẳng đó.
3. Lời giải chi tiết
a) Xét mặt phẳng \(\left( {ABCD} \right)\), gọi \(E\) là giao điểm của \(AB\) và \(NP\).
Ta có \(\left\{ E \right\} = AB \cap NP\), mà \(NP \subset \left( {MNP} \right)\) nên \(\left\{ E \right\} = \left( {SAB} \right) \cap NP\).
b)
Giao tuyến của \(\left( {MNP} \right)\) và \(\left( {SAB} \right)\):
Ta có \(\left\{ \begin{array}{l}M \in SA \subset \left( {SAB} \right)\\M \in \left( {MNP} \right)\end{array} \right. \Rightarrow M \in \left( {SAB} \right) \cap \left( {MNP} \right)\).
Mặt khác, theo câu a, ta có \(\left\{ \begin{array}{l}E \in AB \subset \left( {SAB} \right)\\E \in NP \subset \left( {MNP} \right)\end{array} \right. \Rightarrow E \in \left( {SAB} \right) \cap \left( {MNP} \right)\).
Từ đó, giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {MNP} \right)\) là đường thẳng \(ME\).
Giao tuyến của \(\left( {MNP} \right)\) và \(\left( {SAD} \right)\):
Trên mặt phẳng \(\left( {ABCD} \right)\), gọi \(F\) là giao điểm của \(AD\) và \(NP\).
Vì \(F\) là giao điểm của \(AD\) và \(NP\), ta suy ra \(\left\{ \begin{array}{l}F \in AD\\F \in NP\end{array} \right.\).
Do \(AD \subset \left( {SAD} \right)\), \(NP \subset \left( {MNP} \right)\) nên ta có \(\left\{ \begin{array}{l}F \in \left( {SAD} \right)\\F \in \left( {MNP} \right)\end{array} \right. \Rightarrow F \in \left( {SAD} \right) \cap \left( {MNP} \right)\).
Hơn nữa, ta cũng có \(\left\{ \begin{array}{l}M \in SA \subset \left( {SAD} \right)\\M \in \left( {MNP} \right)\end{array} \right. \Rightarrow M \in \left( {SAD} \right) \cap \left( {MNP} \right)\).
Vậy giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {MNP} \right)\) là đường thẳng \(MF\).
Giao tuyến của \(\left( {MNP} \right)\) và \(\left( {SBC} \right)\):
Ta có \(ME\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {MNP} \right)\)\( \Rightarrow ME \subset \left( {SAB} \right)\).
Trên mặt phẳng \(\left( {SAB} \right)\), gọi \(\left\{ K \right\} = ME \cap SB\).
Suy ra \(\left\{ \begin{array}{l}K \in ME \subset \left( {MNP} \right)\\K \in SB \subset \left( {SBC} \right)\end{array} \right. \Rightarrow K \in \left( {MNP} \right) \cap \left( {SBC} \right)\).
Hơn nữa, ta có \(\left\{ \begin{array}{l}N \in \left( {MNP} \right)\\N \in BC \subset \left( {SBC} \right)\end{array} \right. \Rightarrow N \in \left( {MNP} \right) \cap \left( {SBC} \right)\).
Vậy giao tuyến của hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {MNP} \right)\) là đường thẳng \(NK\).
Giao tuyến của \(\left( {MNP} \right)\) và \(\left( {SCD} \right)\):
Ta có \(MF\) là giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {MNP} \right)\)\( \Rightarrow MF \subset \left( {SAD} \right)\).
Trên mặt phẳng \(\left( {SAD} \right)\), gọi \(\left\{ L \right\} = MF \cap SD\).
Suy ra \(\left\{ \begin{array}{l}L \in MF \subset \left( {MNP} \right)\\L \in SD \subset \left( {SCD} \right)\end{array} \right. \Rightarrow L \in \left( {MNP} \right) \cap \left( {SCD} \right)\).
Hơn nữa, ta có \(\left\{ \begin{array}{l}P \in \left( {MNP} \right)\\P \in CD \subset \left( {SCD} \right)\end{array} \right. \Rightarrow P \in \left( {MNP} \right) \cap \left( {SCD} \right)\).
Vậy giao tuyến của hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {MNP} \right)\) là đường thẳng \(LP\).
Bài 6. Tiết 2: Kinh tế Hoa Kì - Tập bản đồ Địa lí 11
Câu hỏi tự luyện Sinh 11
Chuyên đề 3. Cách mạng công nghiệp lần thứ tư (4.0)
Chủ đề 6: Văn hóa tiêu dùng
Chủ đề 3: Kĩ thuật đá cầu tấn công và chiến thuật tấn công cơ bản
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11