SBT Toán 11 - Kết nối tri thức với cuộc sống tập 2

Câu hỏi 7.11 - Mục Bài tập trang 28

1. Nội dung câu hỏi

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\), tam giác \(ABC\) nhọn. Gọi \(H,K\) lần lượt là trực tâm của tam giác \(ABC\) và \(SBC\). Chứng minh rằng:

a) \(BC \bot \left( {SAH} \right)\) và các đường thẳng \(AH,BC,SK\) đồng quy;

b) \(SB \bot \left( {CHK} \right)\) và \(HK \bot \left( {SBC} \right)\).


2. Phương pháp giải

a) Chỉ ra  \(BC \bot SA,BC \bot AH\) nên \(BC \bot \left( {SAH} \right)\).

 Gọi \(M\) là giao điểm của \(AH\) và \(BC\)

Chứng minh \(BC \bot AH,BC \bot SM\) suy ra \(S,K,M\) thẳng hàng

Do đó, \(SK,AH,BC\) đồng quy tại \(M\).

 b) Chỉ ra \(CH \bot SB\), \(SB \bot CK\) rồi suy ra  \(SB \bot \left( {CHK} \right)\).

Từ đó ta có \(SB \bot HK\), tương tự, ta chứng minh được \(SC \bot \left( {BHK} \right)\), suy ra \(SC \bot HK\). Do đó \(HK \bot \left( {SBC} \right)\).

 

3. Lời giải chi tiết 

a) Chỉ ra  \(BC \bot SA,BC \bot AH\) nên \(BC \bot \left( {SAH} \right)\).

Gọi \(M\) là giao điểm của \(AH\) và \(BC\)\(CH \bot AB\)

Ta có: \(BC \bot \left( {SAM} \right)\), suy ra \(BC \bot SM\), mà \(K\) là trực tâm của tam giác \(SBC\) nên \(SM\) đi qua \(K\).

 Do đó, \(SK,AH,BC\) đồng quy tại \(M\).

b)

Vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot CH\), mà , suy ra \(CH \bot \left( {SAB} \right)\).

 Do đó \(CH \bot SB\), lại có \(SB \bot CK\) nên \(SB \bot \left( {CHK} \right)\). 

Từ đó ta có \(SB \bot HK\), tương tự, ta chứng minh được \(SC \bot \left( {BHK} \right)\), suy ra \(SC \bot HK\). Do đó \(HK \bot \left( {SBC} \right)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved