1. Nội dung câu hỏi
Cho hình lăng trụ \(ABC \cdot A'B'C'\) có \(A'B'C'\) và \(AA'C'\) là hai tam giác đều cạnh \(a\). Biết \(\left( {ACC'A'} \right) \bot \left( {A'B'C'} \right)\). Tính theo \(a\) thể tích khối lăng trụ \(ABC \cdot A'B'C'\).
2. Phương pháp giải
Áp dụng công thức tính thể tích khối lăng trụ: \(S = B.h\).
Trong đó: \(B\) là diện tích đa giác đáy
\(h\) là đường cao của hình lăng trụ
3. Lời giải chi tiết
Kẻ \(AH \bot A'C'\) tại \(H\) thì \(AH \bot \left( {A'B'C'} \right)\).
Ta có \({S_{A'B'C'}} = \frac{{{a^2}\sqrt 3 }}{4};AH = \frac{{a\sqrt 3 }}{2}\)
Suy ra \({V_{ABC.A'B'C'}} = {S_{A'B'C'}} \cdot AH\)\( = \frac{{{a^2}\sqrt 3 }}{4} \cdot \frac{{a\sqrt 3 }}{2} = \frac{{3{a^3}}}{8}\).
Chuyên đề 2. Một số bệnh dịch ở người và cách phòng chống
Câu hỏi tự luyện Sử 11
Chuyên đề I. Phép biến hình phẳng
Unit 7: Healthy lifestyle
Bài 3: pH của dung dịch. Chuẩn độ acid - base
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11