SBT Toán 11 - Kết nối tri thức với cuộc sống tập 2

Câu hỏi 7.51 - Mục Bài tập trang 43

1. Nội dung câu hỏi

 hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và \(SC = a\sqrt 2 \). Gọi H là trung điểm cạnh AB

a) Chứng minh rằng \(SH \bot (ABCD)\)

b) Tính theo \(a\) thể tích khối chóp \(S.ABCD\)

c) Tính theo \(a\) khoảng cách từ điểm A đến mặt phẳng \(\left( {SBD} \right)\)


2. Phương pháp giải

Tính khoảng cách từ H đên (SBD), sau đó suy ra khoảng cách từ A đến (SBD)

 

3. Lời giải chi tiết 

a) Ta có: \(SH = \frac{{a\sqrt 3 }}{2},HC = \frac{{a\sqrt 5 }}{2}\)

Suy ra \(S{H^2} + H{C^2} = S{C^2}\)

Do đó  vuông tại H

Hay\(SH \bot HC\) lại có \(SH \bot AB\)

Nên \(SH \bot (ABCD)\)

b) ta có \(SH = \frac{{a\sqrt 3 }}{2},{S_{ABCD}} = {a^2}\)

Suy ra \({V_{S.ABCD}} = \frac{1}{3}.{S_{ABCD}}.SH = \frac{1}{3}.{a^2}.\frac{{a\sqrt 3 }}{2} = \frac{{{a^3}\sqrt 3 }}{6}\)

c) vì H là trung điểm của AB nên d(A, (SBD))=2.d(H,(SBD)). Kẻ HK vuông góc với BD tại K, HQ vuông góc với SK tại Q. Khi đó \(HQ \bot (SBD)\) suy ra d(H,(SBD))=HQ

ta tính được \(HK = \frac{{AC}}{4} = \frac{{a\sqrt 2 }}{4},SH = \frac{{a\sqrt 3 }}{4}\) mà tam giác SHK vuông tại H, đường cao HQ nên \(\frac{1}{{H{Q^2}}} = \frac{1}{{H{K^2}}} + \frac{1}{{H{S^2}}}\) suy ra \(HQ = \frac{{a\sqrt {21} }}{{24}}\), do đó d(A,(SBD))= \(HQ = \frac{{a\sqrt {21} }}{7}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved