1. Nội dung câu hỏi
Giá trị của \(m\) để hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\frac{{{x^2} + 3x + 2}}{{x + 1}}}&{{\rm{\;khi\;}}x > - 1}\\{ - 2x + m}&{{\rm{\;khi\;}}x \le - 1}\end{array}} \right.\) liên tục trên \(\mathbb{R}\) là
A. 3.
B. 1.
C. -3.
D. -1.
2. Phương pháp giải
Hàm số \(f\left( x \right)\) liên tục tại \({x_0} \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)
3. Lời giải chi tiết
\(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\frac{{{x^2} + 3x + 2}}{{x + 1}}}&{{\rm{\;khi\;}}x > - 1}\\{ - 2x + m}&{{\rm{\;khi\;}}x \le - 1}\end{array}} \right.\)
\(f\left( x \right) = \frac{{{x^2} + 3x + 2}}{{x + 1}}\,khi\,x > - 1\) liên tục trên \(\left( { - 1; + \infty } \right)\)
\(f\left( x \right) = - 2x + m\,\,khi\,x < - 1\) liên tục trên \(\left( { - \infty ; - 1} \right)\)
\(f\left( { - 1} \right) = - 2\left( { - 1} \right) + m\, = m + 2\)
\(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} \left( { - 2x + m} \right)\,\, = m + 2\)
\(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{{x^2} + 3x + 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to - {1^ + }} \left( {x + 2} \right) = - 1 + 2 = 1\)
Hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\frac{{{x^2} + 3x + 2}}{{x + 1}}}&{{\rm{\;khi\;}}x > - 1}\\{ - 2x + m}&{{\rm{\;khi\;}}x \le - 1}\end{array}} \right.\) liên tục trên \(\mathbb{R} \Leftrightarrow m + 2 = 1 \Leftrightarrow m = - 1\)
Chọn D.
Chương 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Vật lí lớp 11
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Sinh học lớp 11
Unit 5: Technology
Bài 4. Thực hành: Tìm hiểu những cơ hội và thách thức của toàn cầu hóa đối với các nước đang phát triển - Tập bản đồ Địa lí 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11