Bài 1. Sự xác định đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II. Đường tròn
Đề bài
Hãy đơn giản các biểu thức:
a) \(1 - {\sin ^2}\alpha \);
b) \((1 - \cos \alpha )(1 + \cos \alpha )\);
c) \(1 + {\sin ^2}\alpha + {\cos ^2}\alpha \);
d) \(\sin \alpha - \sin \alpha .{\cos ^2}\alpha \);
e) \({\sin ^4}\alpha + {\cos ^4}\alpha + 2.{\sin ^2}\alpha .{\cos ^2}\alpha \);
g) \(ta{n^2}\alpha - {\sin ^2}\alpha .ta{n^2}\alpha \);
h) \({\cos ^2}\alpha + ta{n^2}\alpha .c{\rm{o}}{{\rm{s}}^2}\alpha \);
i) \(ta{n^2}\alpha (2.{\cos ^2}\alpha + {\sin ^2}\alpha - 1).\)
Phương pháp giải - Xem chi tiết
Áp dụng các kiến thức:
1) \({\sin ^2}\alpha + {\cos ^2}\alpha =1\)
2) \(ta{n^2}\alpha = \displaystyle {{{{\sin }^2}\alpha } \over {{{\cos }^2}\alpha }}\)
Lời giải chi tiết
a) \(1 - {\sin ^2}\alpha = ({\sin ^2}\alpha + {\cos ^2}\alpha ) - {\sin ^2}\alpha \)
\( = {\sin ^2}\alpha + {\cos ^2}\alpha - {\sin ^2}\alpha = {\cos ^2}\alpha \)
b)
\(\eqalign{
&(1 - \cos \alpha )(1 + \cos \alpha ) = 1 - {\cos ^2}\alpha \cr
& = ({\sin ^2}\alpha + {\cos ^2}\alpha ) - {\cos ^2}\alpha \cr} \)
\( = {\sin ^2}\alpha + {\cos ^2}\alpha - {\cos ^2}\alpha = {\sin ^2}\alpha \)
c)
\(\eqalign{
& 1 + {\sin ^2}\alpha + {\cos ^2}\alpha \cr
& = 1 + ({\sin ^2}\alpha + {\cos ^2}\alpha ) = 1 + 1 = 2 \cr} \)
d) \(\sin \alpha - \sin \alpha .{\cos ^2}\alpha\)\(= \sin \alpha (1 - {\cos ^2}\alpha )\)
\( = \sin \alpha \left[ {\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) - {{\cos }^2}\alpha } \right]\)
\( = \sin \alpha ({\sin ^2}\alpha + {\cos ^2}\alpha - {\cos ^2}\alpha )\)
\( = \sin \alpha .{\sin ^2}\alpha = {\sin ^3}\alpha \)
\(\eqalign{
& e)\,{\sin ^4}\alpha + {\cos ^4}\alpha + 2.{\sin ^2}\alpha .{\cos ^2}\alpha \cr
& = {({\sin ^2}\alpha + {\cos ^2}\alpha )^2} = {1^2} = 1 \cr} \)
g) \(ta{n^2}\alpha - {\sin ^2}\alpha .ta{n^2}\alpha \)\( = ta{n^2}\alpha (1 - {\sin ^2}\alpha )\)
\( = ta{n^2}\alpha.\left[ {\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) - {{\sin }^2}\alpha } \right]\)
\( = ta{n^2}\alpha .{\cos ^2}\alpha = \displaystyle {{{{\sin }^2}\alpha } \over {{{\cos }^2}\alpha }}.{\cos ^2}\alpha\)\( = {\sin ^2}\alpha \)
\(\eqalign{
& h)\,{\cos ^2}\alpha + ta{n^2}\alpha .c{\rm{o}}{{\rm{s}}^2}\alpha \cr
& = c{\rm{o}}{{\rm{s}}^2}\alpha + {{{{\sin }^2}\alpha } \over {c{\rm{o}}{{\rm{s}}^2}\alpha }}.c{\rm{o}}{{\rm{s}}^2}\alpha \cr
& = c{\rm{o}}{{\rm{s}}^2}\alpha + {\sin ^2}\alpha = 1 \cr} \)
i)
\( ta{n^2}\alpha (2.{\cos ^2}\alpha + {\sin ^2}\alpha - 1) \)
\( = ta{n^2}\alpha .\)\(\left[ {{{\cos }^2}\alpha + \left( {{{\cos }^2}\alpha + {{\sin }^2}\alpha } \right) - 1} \right] \)
\( = ta{n^2}\alpha .({\cos ^2}\alpha + 1 - 1)\)\( = ta{n^2}\alpha .{\cos ^2}\alpha \)
\( = \displaystyle {{{{\sin }^2}\alpha } \over {{{\cos }^2}\alpha }}.{\cos ^2}\alpha = {\sin ^2}\alpha \)
Đề thi vào 10 môn Anh Nghệ An
Bài 18. Vùng Trung du và miền núi Bắc Bộ (tiếp theo)
CHƯƠNG II. NHIỄM SẮC THỂ
Unit 1: A Visit From A Pen Pal - Cuộc thăm của bạn tâm thư
CHƯƠNG 5. DẪN XUẤT CỦA HIDROCACBON - POLIME