1. Nội dung câu hỏi
a) Cho \(\tan \alpha + \cot \alpha = 2\). Tính giá của trị biểu thức \({\tan ^3}\alpha + {\cot ^3}\alpha \).
b) Cho \(\sin \alpha + \cos \alpha = \frac{1}{4}\). Tính giá của trị biểu thức \(\sin \alpha .\cos \alpha \).
c) Cho \(\sin \alpha + \cos \alpha = \frac{1}{2}\). Tính giá của trị biểu thức \({\sin ^3}\alpha + {\cos ^3}\alpha \).
2. Phương pháp giải
Sử dụng kiến thức về hệ thức cơ bản giữa các giá trị lượng giác của một góc:
a) \(\tan \alpha .\cot \alpha = 1\)
b, c) \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)
3. Lời giải chi tiết
a) \({\tan ^3}\alpha + {\cot ^3}\alpha \) \( = {\left( {\tan \alpha + \cot \alpha } \right)^3} - 3\tan \alpha \cot \alpha \left( {\tan \alpha + \cot \alpha } \right)\)
\( \) \( = {\left( {\tan \alpha + \cot \alpha } \right)^3} - 3\left( {\tan \alpha + \cot \alpha } \right) \) \( = {2^3} - 3.2 \) \( = 2\)
b) \(\sin \alpha + \cos \alpha \) \( = \frac{1}{4} \) \( \Rightarrow {\sin ^2}\alpha + 2\sin \alpha \cos \alpha + {\cos ^2}\alpha \) \( = \frac{1}{{16}} \) \( \Rightarrow 1 + 2\sin \alpha \cos \alpha \) \( = \frac{1}{{16}}\)
\( \) \( \Rightarrow \sin \alpha .\cos \alpha \) \( = \frac{{ - 15}}{{32}}\)
c) \(\sin \alpha + \cos \alpha \) \( = \frac{1}{2} \) \( \Rightarrow {\sin ^2}\alpha + 2\sin \alpha \cos \alpha + {\cos ^2}\alpha \) \( = \frac{1}{4} \) \( \Rightarrow 1 + 2\sin \alpha \cos \alpha \) \( = \frac{1}{4}\)
\( \) \( \Rightarrow \sin \alpha .\cos \alpha \) \( = \frac{{ - 3}}{8}\)
\({\sin ^3}\alpha + {\cos ^3}\alpha \) \( = {\left( {\sin \alpha + \cos \alpha } \right)^3} - 3\sin \alpha \cos \alpha \left( {\sin \alpha + \cos \alpha } \right)\)
\( \) \( = {\left( {\frac{1}{2}} \right)^3} - 3.\frac{{ - 3}}{8}.\frac{1}{2} \) \( = \frac{1}{8} + \frac{9}{{16}} \) \( = \frac{{11}}{{16}}\).
Dương phụ hành - Cao Bá Quát
Unit 7: Education for school-leavers
Chương 1: Cân bằng hóa học
Chủ đề 3: Kĩ thuật nhảy ném rổ và chiến thuật tấn công trong bóng rổ
CHƯƠNG VII: MẮT VÀ CÁC DỤNG CỤ QUANG
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11