1. Nội dung câu hỏi
Chứng minh rằng các hàm số dưới đây là hàm số tuần hoàn:
a) \(y = \sin x - 3\tan \frac{x}{2}\);
b) \(y = \left( {\cos 2x - 1} \right)\sin x\).
2. Phương pháp giải
Sử dụng kiến thức về hàm số tuần hoàn để chứng minh: Hàm số \(y = f\left( x \right)\) với tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại số \(T \ne 0\) sao cho với mọi \(x \in D\) ta có \(x \pm T \in D\) và \(f\left( {x + T} \right) = f\left( T \right)\). Số dương T nhỏ nhất thỏa mãn các điều kiện trên (nếu có) được gọi là chu kì của hàm số tuần hoàn \(y = f\left( x \right)\).
3. Lời giải chi tiết
a) Tập xác định: \(D = \mathbb{R}\backslash \left\{ {\pi + k2\pi |k \in \mathbb{Z}} \right\}\).
Với mọi \(x \in D\) ta có: \(x \pm 2\pi \in D\) và \(\sin \left( {x + 2\pi } \right) - 3\tan \frac{{x + 2\pi }}{2} = \sin x - 3\tan \left( {\frac{x}{2} + \pi } \right) = \sin x - 3\tan \frac{x}{2}\)
Do đó, hàm số \(y = \sin x - 3\tan \frac{x}{2}\) là hàm số tuần hoàn.
b) Tập xác định: \(D = \mathbb{R}\)
Với mọi \(x \in D\) ta có: \(x \pm 2\pi \in D\) và \(\left( {\cos 2\left( {x + 2\pi } \right) - 1} \right)\sin \left( {x + 2\pi } \right) = \left( {\cos \left( {2x + 4\pi } \right) - 1} \right)\sin x = \left( {\cos 2x - 1} \right)\sin x\)
Do đó, hàm số \(y = \left( {\cos 2x - 1} \right)\sin x\) là hàm số tuần hoàn.
Chương 2. Cảm ứng ở sinh vật
Unit 4: Planet Earth
SGK Toán 11 - Chân trời sáng tạo tập 1
Chương 4: Hydrocarbon
Unit 6: Competitions - Những cuộc thi
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11