1. Nội dung câu hỏi
Cho hai dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) có \(\lim {u_n} = 3,\lim {v_n} = 4\). Tìm các giới hạn sau:
a) \(\lim \left( {3{u_n} - 4} \right)\);
b) \(\lim \left( {{u_n} + 2{v_n}} \right)\);
c) \(\lim {\left( {{u_n} - {v_n}} \right)^2}\);
d) \(\lim \frac{{ - 2{u_n}}}{{{v_n} - 2{u_n}}}\).
2. Phương pháp giải
a) + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} - {v_n}} \right) = a - b\), \(\lim \left( {c.{u_n}} \right) = c.a\).
+ Sử dụng kiến thức về một số giới hạn cơ bản: \(\lim c = c\) (c là hằng số).
b) + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} + {v_n}} \right) = a + b\), \(\lim \left( {c.{u_n}} \right) = c.a\).
+ Sử dụng kiến thức về một số giới hạn cơ bản: \(\lim c = c\) (c là hằng số).
c) Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} - {v_n}} \right) = a - b\)
d) Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} - {v_n}} \right) = a - b\), \(\lim \left( {c.{u_n}} \right) = c.a\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\).
3. Lời giải chi tiết
a) \(\lim \left( {3{u_n} - 4} \right) = 3\lim {u_n} - 4 = 3.3 - 4 = 5\);
b) \(\lim \left( {{u_n} + 2{v_n}} \right) = \lim {u_n} + 2\lim {v_n} = 3 + 2.4 = 11\);
c) \(\lim {\left( {{u_n} - {v_n}} \right)^2} = {\left( {\lim {u_n} - \lim {v_n}} \right)^2} = {\left( {4 - 3} \right)^2} = 1\);
d) \(\lim \frac{{ - 2{u_n}}}{{{v_n} - 2{u_n}}} = \frac{{ - 2\lim {u_n}}}{{\lim {v_n} - \lim 2{u_n}}} = \frac{{ - 2.3}}{{4 - 2.3}} = 3\).
SBT Ngữ văn 11 - Kết nối tri thức tập 2
HÌNH HỌC - TOÁN 11
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Tiếng Anh lớp 11
Unit 1: Generation gap and Independent life
Chuyên đề 1: Phép biến hình trong mặt phẳng
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11