Bài 1. Nhân đơn thức với đa thức
Bài 2. Nhân đa thức với đa thức
Bài 3. Những hằng đẳng thức đáng nhớ
Bài 4. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 5. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Bài 10. Chia đơn thức cho đơn thức
Bài 11. Chia đa thức cho đơn thức
Bài 12. Chia đa thức một biến đã sắp xếp
Ôn tập chương I. Phép nhân và chia các đa thức
Bài 1. Phân thức đại số
Bài 2. Tính chất cơ bản của phân thức
Bài 3. Rút gọn phân thức
Bài 4. Quy đồng mẫu thức nhiều phân thức
Bài 5. Phép cộng các phân thức đại số
Bài 6. Phép trừ các phân thức đại số
Bài 7. Phép nhân các phân thức đại số
Bài 8. Phép chia các phân thức đại số
Bài 9. Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
Ôn tập chương II. Phân thức đại số
Đề bài
Câu 1: Khẳng định sau đúng hay sai?
\(\begin{array}{l}1)\,\,\left( {\dfrac{1}{4}{a^2} - {b^2}} \right) = \left( {\dfrac{1}{2}a - b} \right)\left( {\dfrac{1}{2}a + b} \right)\\2)\,\,{\left( {\sqrt 5 x - b} \right)^2} = {\left( {b - \sqrt 5 x} \right)^2}\\3)\,\,{\left( {2x + 1} \right)^3} = {x^3} + 3{x^2} + 3x + 1\\4)\,\,3{y^2} - 2y - 1 = \left( {3y + 1} \right)\left( {y - 1} \right)\end{array}\)
Câu 2: Chọn kết quả đúng
1. Khai triển đẳng thức: \({\left( {\dfrac{1}{3}x + 3y} \right)^2}\) ta được kết quả
\(\begin{array}{l}(A)\,\,\dfrac{1}{9}{x^2} + 9{y^2}\\(B)\,\,\dfrac{1}{9}{x^2} - 9{y^2} - 2xy\\(C)\,\,\dfrac{1}{9}{x^2} + 2xy + 9{y^2}\\(D)\,\,\dfrac{1}{9}{x^2} + xy - {y^2}\end{array}\)
2. Kết quả phép chia đa thức \(21{x^2}y - 7x{y^2} + xy\) cho xy là:
\(\begin{array}{l}(A)\,\,21x - 7y\\(B)\,\,21x + 7y\\(C)\,\,21x - 7y + xy\\(D)\,\,21x - 7y + 1\end{array}\)
Câu 3:
1. Thực hiện phép tính
\(\left( {y - 1} \right)\left( {{y^2} + y + 1} \right) \)\(+ \left( {\dfrac{1}{3}{x^2}y - y} \right)\left( {2x + {y^2}} \right)\)
2. Tìm số dư trong phép chia đa thức
\(\left( {4{y^4} - 3{y^2} - 2y + 5} \right):\left( {{y^2} - 1} \right)\)
Câu 4 :
a) Phân tích đa thức thành nhân tử
\(A = 5{x^2} - 10xy - 20{z^2} + 5{y^2}\)
b) Tìm \(x\) thỏa mãn: \({x^3} = x\)
Lời giải chi tiết
Câu 1:
Phương pháp giải:
1) Áp dụng hằng đẳng thức: \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\)
2) Áp dụng hằng đẳng thức: \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)
3) Áp dụng hằng đẳng thức: \({\left( {A + B} \right)^3} = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\)
4) Phân tích đa thức thành nhân tử bằng phương pháp tách và nhóm hạng tử để xuất hiện nhân tử chung.
Lời giải:
\(\begin{array}{l}1)\,\,\left( {\dfrac{1}{4}{a^2} - {b^2}} \right) = \left[ {{{\left( {\dfrac{1}{2}a} \right)}^2} - {b^2}} \right] \\= \left( {\dfrac{1}{2}a - b} \right)\left( {\dfrac{1}{2}a + b} \right)\\2)\,\,{\left( {\sqrt 5 x - b} \right)^2}\\ = {\left( {\sqrt 5 x} \right)^2} - 2.\sqrt 5 x.b + {b^2}\\ = {b^2} - 2.b.\sqrt 5 x + {\left( {\sqrt 5 x} \right)^2}\\ = {\left( {b - \sqrt 5 x} \right)^2}\\3)\,\,{\left( {2x + 1} \right)^3}\\ = {\left( {2x} \right)^3} + 3.{\left( {2x} \right)^2}.1 + 3.2x{.1^2} + {1^3}\\ = 8{x^3} + 12{x^2} + 6x + 1\\4)\,\,3{y^2} - 2y - 1\\ = 3{y^2} + y - 3y - 1\\ = y\left( {3y + 1} \right) - \left( {3y + 1} \right)\\ = \left( {3y + 1} \right)\left( {y - 1} \right)\end{array}\)
Các khẳng định đúng: 1, 2, 4
Khẳng đinh sai: 3
Câu 2:
1)
Phương pháp giải:
Áp dụng hằng đẳng thức: \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)
Lời giải:
\({\left( {\dfrac{1}{3}x + 3y} \right)^2}\)
\( = {\left( {\dfrac{1}{3}x} \right)^2} + 2.\left( {\dfrac{1}{3}x} \right).3y \)\(+ {\left( {3y} \right)^2}\)
\( = \dfrac{1}{9}{x^2} + 2xy + 9{y^2}\)
Chọn C.
2)
Phương pháp giải:
- Muốn chia đa thức \(A\) cho đơn thức \(B\) (trường hợp các hạng tử của đa thức \(A\) đều chia hết cho đơn thức \(B\)), ta chia mỗi hạng tử của \(A\) cho \(B\) rồi cộng các kết quả với nhau.
- Áp dụng công thức chia hai lũy thừa cùng cơ số: \({x^n}:{x^m} = {x^{n - m}}\) với \(n \ge m;\,\,n,m \in N\)
Lời giải:
\(\begin{array}{l}\left( {21{x^2}y - 7x{y^2} + xy} \right):xy\\ = \left( {21{x^2}y:xy} \right) - \left( {7x{y^2}:xy} \right) + \left( {xy:xy} \right)\\ = 21x - 7y + 1\end{array}\)
Chọn D.
Câu 3:
1)
Phương pháp giải:
- Áp dụng hằng đẳng thức: \({A^3} - {B^3} = \left( {A - B} \right)\left( {{A^2} + AB + {B^2}} \right)\)
- Quy tắc nhân đa thức với đa thức: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
Lời giải:
\(\left( {y - 1} \right)\left( {{y^2} + y + 1} \right) \)\(+ \left( {\dfrac{1}{3}{x^2}y - y} \right)\left( {2x + {y^2}} \right)\)
\(= {y^3} - {1^3} + \dfrac{1}{3}{x^2}y.\left( {2x + {y^2}} \right) \)\(- y.\left( {2x + {y^2}} \right)\)
\( = {y^3} - 1 + \dfrac{2}{3}{x^3}y + \dfrac{1}{3}{x^2}{y^3} - 2xy - {y^3}\)
\( = \dfrac{2}{3}{x^3}y + \dfrac{1}{3}{x^2}{y^3} - 2xy - 1\)
2)
Phương pháp giải:
- Áp dụng quy tắc chia đa thức một biến đã sắp xếp.
- Áp dụng công thức chia hai lũy thừa cùng cơ số: \({x^n}:{x^m} = {x^{n - m}}\) với \(n \ge m;\,\,n,m \in N\)
Lời giải:
Ta có: \(4{y^4}\, - 3{y^2} - 2y + 5\, \)\(= \,\left( {{y^2} - 1} \right)\left( {4{y^2} + 1} \right) + \left( { - 2y + 6} \right)\)
Số dư trong phép chia là \( - 2y + 6\)
Ta có: \(4{y^4}\, - 3{y^2} - 2y + 5\, \)\(= \,\left( {{y^2} - 1} \right)\left( {4{y^2} + 1} \right) + \left( { - 2y + 6} \right)\)
Số dư trong phép chia là \( - 2y + 6\).
Câu 4:
Phương pháp giải:
a) Áp dụng phương pháp phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung, nhóm hạng tử, dùng hằng đẳng thức.
Áp dụng các hằng đẳng thức:
\(\begin{array}{l}{\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\\{A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\end{array}\)
b) Áp dụng:
- Phương pháp phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung, dùng hằng đẳng thức.
- Hằng đẳng thức \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\)
- Tính chất đa thức bằng \(0\) nếu nó chứa nhân tử bằng \(0.\)
\(B\left( x \right)C\left( x \right) = 0 \Rightarrow \left[ \begin{array}{l}B\left( x \right) = 0\\C\left( x \right) = 0\end{array} \right.\)
Lời giải:
a)
\(\begin{array}{l}A = 5{x^2} - 10xy - 20{z^2} + 5{y^2}\\ = 5{x^2} - 10xy + 5{y^2} - 20{z^2}\\ = 5\left( {{x^2} - 2xy + {y^2} - 4{z^2}} \right)\\ = 5\left[ {\left( {{x^2} - 2xy + {y^2}} \right) - {{\left( {2z} \right)}^2}} \right]\\ = 5\left[ {{{\left( {x - y} \right)}^2} - {{\left( {2z} \right)}^2}} \right]\\ = 5\left( {x - y - 2z} \right)\left( {x - y + 2z} \right)\end{array}\)
b)
\(\begin{array}{l}{x^3} = x\\{x^3} - x = 0\\x\left( {{x^2} - 1} \right) = 0\\x\left( {x - 1} \right)\left( {x + 1} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}x = 0\\x - 1 = 0\\x + 1 = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = - 1\end{array} \right.\end{array}\)
Bài 17: Nghĩa vụ tôn trọng, bảo vệ tài sản nhà nước và lợi ích công cộng
CHƯƠNG VIII: DA
Unit 6. A big match!
Unit 12: Which Is the Biggest Planet?
Tải 10 đề kiểm tra 15 phút - Chương 3
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8