Đề bài
Trên đường tròn (O) lấy hai điểm A, B. Hai tiếp tuyến tại A và B cắt nhau tại M (xem hình bên). Hãy chứng minh AB vuông góc với OM rồi so sánh các góc \(\widehat {BAM},\widehat {AOM},\widehat {BOM}\).
Lời giải chi tiết
Ta có \(OA = OB = R \Rightarrow O\) thuộc trung trực của AB
\(MA = MB\) (tính chất hai tiếp tuyến cắt nhau) \( \Rightarrow M\) thuộc trung trực của AB.
Từ đó suy ra OM là đường trung trực của AB \( \Rightarrow OM \bot AB\).
Gọi \(H = OM \cap AB\) ta có:
\(\widehat {BAM} + \widehat {AOB} = \widehat {AOM} = {90^0}\) (do AM là tiếp tuyến của (O) nên \(AM \bot OA\))
Tam giác OAH vuông tại H nên \(\widehat {AOM} + \widehat {AOB} = {90^0}\) (hai góc nhọn trong tam giác vuông thì phụ nhau).
\( \Rightarrow \widehat {BAM} = \widehat {AOM}\).
Lại có \(\widehat {AOM} = \widehat {BOM}\) (tính chất hai tiếp tuyến cắt nhau).
Vậy \(\widehat {BAM} = \widehat {AOM} = \widehat {BOM}\) (đpcm).
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Sinh học lớp 9
ĐỊA LÍ ĐỊA PHƯƠNG
Đề thi vào 10 môn Anh Hà Nội
Đề thi vào 10 môn Toán Bắc Giang
Chương 3. Phi kim. Sơ lược về bảng tuần hoàn các nguyên tố hóa học