PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

Lý thuyết về căn thức bậc hai và hằng đẳng thức √A^2= |A|

1. Căn thức bậc hai

Với \(A\) là một biểu thức đại số, người ta gọi \(\sqrt A \) là căn thức bậc hai của \(A\). Khi đó, \(A\) được gọi là biểu thức lấy căn hay biểu thức dưới dấu căn.

\(\sqrt A \) xác định hay có nghĩa khi \(A\) lấy giá trị không âm.

2. Hằng đẳng thức \(\sqrt {{A^2}}  = \left| A \right|\)  

Với mọi số \(a\), ta có \(\sqrt {{a^2}}  = \left| a \right|\).

* Một cách tổng quát, với \(A\) là một biểu thức ta có 

\(\sqrt {{A^2}}  = \left| A \right|\) nghĩa là 

\(\sqrt {{A^2}}  = A\) nếu \(A \ge 0\) và \(\sqrt {{A^2}}  =  - A\) nếu \(A < 0\).

3. Các dạng toán cơ bản

Dạng 1: Tìm điều kiện để căn thức xác định

Ta có \(\sqrt A \) xác định hay có nghĩa khi \(A\ge 0\) 

Ví dụ: \(\sqrt {x - 1} \) xác định khi \(x - 1 \ge 0 \Leftrightarrow x \ge 1\)

Dạng 2: Rút gọn biểu thức 

Sử dụng:  Với \(A\) là một biểu thức ta có \(\sqrt {{A^2}}  = \left| A \right|\)

Vì dụ: Với \(x>2\) ta có: \(A = \dfrac{{\sqrt {{x^2} - 4x + 4} }}{{x - 2}}\)\( = \dfrac{{\sqrt {{{\left( {x - 2} \right)}^2}} }}{{x - 2}} = \dfrac{{\left| {x - 2} \right|}}{{x - 2}} \)\(= \dfrac{{x - 2}}{{x - 2}} = 1\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved