1. Kiến thức cần nhớ
Cho hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \({x_0}\). Khi đó:
- Hệ số góc của tiếp tuyến tại điểm \({x_0}\) là:
\(k = f'\left( {{x_0}} \right)\)
- Phương trình tiếp tuyến của đồ thị hàm số tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là:
\(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\)
2. Một số dạng toán thường gặp
Dạng 1: Tiếp tuyến tại điểm \(M\left( {{x_0};{y_0}} \right)\) thuộc đồ thị hàm số.
Cho hàm số \(\left( C \right):y = f\left( x \right)\) và điểm \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\). Viết phương trình tiếp tuyến với \(\left( C \right)\) tại \(M\).
Phương pháp:
- Bước 1: Tính đạo hàm \(f'\left( x \right)\) và tìm hệ số góc của tiếp tuyến \(k = f'\left( {{x_0}} \right)\).
- Bước 2: Viết phương trình tiếp tuyến tại \(M\): \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\).
Dạng 2: Tiếp tuyến có hệ số góc \(k\) cho trước.
Phương pháp:
- Bước 1: Gọi \(\left( \Delta \right)\) là tiếp tuyến cần tìm có hệ số góc \(k\).
- Bước 2: Giả sử \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm. Khi đó \({x_0}\) thỏa mãn \(f'\left( {{x_0}} \right) = k\).
- Bước 3: Giải phương trình trên tìm \({x_0} \Rightarrow {y_0} = f\left( {{x_0}} \right)\).
- Bước 4: Phương trình tiếp tuyến cần tìm là: \(y = k\left( {x - {x_0}} \right) + {y_0}\).
Dạng 3: Tiếp tuyến đi qua một điểm.
Cho đồ thị hàm số \(\left( C \right):y = f\left( x \right)\) và điểm \(A\left( {a;b} \right)\). Viết phương trình tiếp tuyến với \(\left( C \right)\) biết tiếp tuyến đi qua \(A\).
Phương pháp:
- Bước 1: Gọi \(\Delta \) là đường thẳng qua \(A\) và có hệ số góc \(k\). Khi đó \(\Delta :y = k\left( {x - a} \right) + b\)
- Bước 2: Để \(\Delta \) là tiếp tuyến của \(\left( C \right) \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) = k\left( {x - a} \right) + b\\f'\left( x \right) = k\end{array} \right.\) có nghiệm.
- Bước 3: Giải hệ phương trình trên tìm \(k\), thay vào ta được phương trình tiếp tuyến cần tìm.
- Hệ số góc của tiếp tuyến với \(\left( C \right)\) tại điểm \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\) là \(k = f'\left( {{x_0}} \right)\).
- Cho đường thẳng \(d:y = {k_d}x + a\).
+) \(\Delta \bot d \Rightarrow {k_\Delta }.{k_d} = - 1 \Leftrightarrow {k_\Delta } = - \dfrac{1}{{{k_d}}}\)
+) \(\Delta //d \Rightarrow {k_\Delta } = {k_d}\)
+) \(\left( {\Delta ,d} \right) = \alpha \Rightarrow \tan \alpha = \left| {\dfrac{{{k_\Delta } - {k_d}}}{{1 + {k_\Delta }.{k_d}}}} \right|\)
+) \(\left( {\Delta ,Ox} \right) = \alpha \Rightarrow {k_\Delta } = \pm \tan \alpha \)
CHƯƠNG I. CHUYỂN HÓA VẬT CHẤT VÀ NĂNG LƯỢNG
Chủ đề 4. Dòng điện, mạch điện
Chủ đề 4. Tổ chức cuộc sống gia đình và tài chính cá nhân
Unit 4: Preserving World Heritage
Tải 10 đề kiểm tra 15 phút - Chương II - Hóa học 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11