Cho điểm B nằm giữa hai điểm A, C. Vẽ đường thẳng d vuông góc với AC tại A. Vẽ (O) đường kính BC và trên đó lấy một điểm M bất kỳ. Tia CM cắt d tại D, tia AM cắt (O) tại điê...

ADS
thumb up 0
thumb down
Trả lời câu hỏi của no name
  • Câu trả lời phải chính xác, đầy đủ dựa trên kiến thức xác thực:
    • ✔ Đối với câu hỏi trắc nghiệm: Đưa đáp án lựa chọn + giải thích lý do chọn đáp án.
    • ✔ Đối với câu hỏi tự luận: Đưa lời giải và đáp án cho câu hỏi.
    • ✔ Đối với câu hỏi trả lời ngắn: Đưa ra đáp án + giải thích lý do.
    • ✔ Chấp nhận sử dụng ảnh do thành viên viết tay, ảnh cần rõ nét, không bị mờ, vỡ ảnh.
  • Sử dụng ngôn ngữ rõ ràng, dễ hiểu.
  • Tránh đưa ra các ý kiến cá nhân mang tính chất chủ quan.
  • Nếu sử dụng thông tin từ nguồn khác, phải trích dẫn nguồn đầy đủ và chính xác.
  • Tuyệt đối không được sao chép các thông tin từ các trang khác, từ AI hoặc chatGPT.
ADS
CÂU TRẢ LỜI
avatar
Timi

29/04/2024

Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
Cho điểm B nằm giữa hai điểm A, C. Vẽ đường thẳng d vuông góc với AC tại A. Vẽ (O) đường kính BC và trên đó lấy một điểm M bất kỳ. Tia CM cắt d tại D, tia AM cắt (O) tại điểm thứ hai N. Tia DB cắt (O) tại điểm thứ hai P Loại bài toán: Bài toán về hình học không gian. Giải bài toán: Bước 1: Xác định các điểm và đường thẳng đã cho Chúng ta có điểm B nằm giữa hai điểm A, C. Đường thẳng d vuông góc với AC tại A. Đường tròn (O) có đường kính BC và trên đó lấy một điểm M bất kỳ. Tia CM cắt d tại D, tia AM cắt (O) tại điểm thứ hai N. Tia DB cắt (O) tại điểm thứ hai P. Bước 2: Vận dụng các công thức và quy luật trong hình học để giải quyết bài toán Theo tính chất của tam giác vuông, ta có: Vì M là một điểm bất kỳ trên đường tròn (O), nên theo tính chất của tam giác inscribed in a circle, ta có: Do đó, ta có: Từ hai phương trình trên, suy ra: Đây là câu trả lời cuối cùng của bài toán. Tứ giác APND là hình gì? Vì sao Để trả lời câu hỏi này, chúng ta cần thêm thông tin về tứ giác APND. Cụ thể, chúng ta cần biết mối quan hệ giữa các cạnh và góc của nó. Ví dụ, nếu APND là một tứ giác có hai đường chéo bằng nhau hoặc hai cặp cạnh đối diện bằng nhau và song song với nhau, thì nó có thể là một hình bình hành. Nếu APND có tất cả các cạnh bằng nhau và tất cả các góc bằng 90 độ, thì nó là một hình vuông. Do đó, không thể xác định loại tứ giác APND mà không có thông tin chi tiết hơn. Chứng minh trọng tâm G của tam giác MAC chạy trên một đường tròn cố định khi điểm M di chuyển trên đường tròn (O). Đây là một bài toán thuộc phần Hình học không gian, cụ thể là về tam giác và đường tròn. Để giải quyết bài toán này, chúng ta sẽ sử dụng các kiến thức về tọa độ trọng tâm của tam giác và tính chất của đường tròn. Bước 1: Xác định tọa độ điểm M và trọng tâm G Giả sử M có tọa độ (x,y) khi di chuyển trên đường tròn (O). Theo công thức tọa độ trọng tâm, ta có: G = Với A, B là hai điểm cố định của tam giác MAC. Bước 2: Chứng minh G di chuyển theo một đường tròn cố định Chúng ta cần chứng minh rằng khi M di chuyển trên (O), G cũng di chuyển theo một quỹ đạo hình tròn. Điều này có nghĩa là khoảng cách từ G tới một điểm cố định (giả sử là O) luôn không thay đổi. Ta có OG = Thay G = vào phương trình, ta được: OG = Vì A, B, O là cố định và M di chuyển trên (O), nên OG không thay đổi. Điều này chứng tỏ G di chuyển theo một quỹ đạo hình tròn. Vậy, ta đã chứng minh được rằng trọng tâm G của tam giác MAC chạy trên một đường tròn cố định khi điểm M di chuyển trên đường tròn (O).
Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận

c) Hình vuông 

Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận
ADS

Nếu bạn muốn hỏi bài tập

Các câu hỏi của bạn luôn được giải đáp dưới 10 phút

Ảnh ads

CÂU HỎI LIÊN QUAN

logo footer
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
app store ch play
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi