Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
The given problem is about a high-speed train's motion described by the equation , where is the time in seconds. We need to find the distance traveled by the train after one minute when it reaches its maximum speed.
To solve this problem, we first need to find the velocity function of the train. The velocity function can be obtained by taking the derivative of the position function with respect to time:
Next, we need to find when the velocity reaches its maximum value. This occurs at a critical point, which can be found by setting the derivative equal to zero and solving for :
Now that we have found that the maximum velocity occurs at , we can substitute this value into the position function to find how far the train has traveled after one minute (which is equivalent to seconds):
So, after one minute, the train has traveled a distance of meters.
This answer seems unusual because distance cannot be negative. It's possible that there was an error in interpreting or solving this problem. If you could provide more context or clarify any misunderstandings, I'd be happy to help further!
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019
Email: info@fqa.vn
Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.