Câu trong ảnh làm như nào các bạn ơi...

rotate image
thumb up 0
thumb down
Trả lời câu hỏi của Nguyễn Anh Quân

Làm sao để có câu trả lời hay nhất?

  • Luôn có GIẢI THÍCH các bước giải
  • Không copy câu trả lời của Timi
  • Không sao chép trên mạng
  • Không spam câu trả lời để nhận điểm
  • Spam sẽ bị khóa tài khoản
CÂU TRẢ LỜI
avatar
Timi

26/12/2024

Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
Bài 4. Để tính số đo các góc của tam giác khi biết số đo ba góc lần lượt tỉ lệ với 4; 5; 6, ta làm như sau: 1. Tìm tổng số phần bằng nhau: Tổng số phần bằng nhau là: \[ 4 + 5 + 6 = 15 \] 2. Tính số đo mỗi góc: - Số đo góc thứ nhất là: \[ \frac{4}{15} \times 180^\circ = 48^\circ \] - Số đo góc thứ hai là: \[ \frac{5}{15} \times 180^\circ = 60^\circ \] - Số đo góc thứ ba là: \[ \frac{6}{15} \times 180^\circ = 72^\circ \] Vậy số đo các góc của tam giác đó lần lượt là 48°, 60° và 72°. Bài 5. Gọi số cây của lớp 7A, 7B, 7C trồng được lần lượt là 6 phần, 7 phần và 10 phần. Số cây của lớp 7C trồng được nhiều hơn số cây của lớp 7B là: 10 – 7 = 3 (phần) Số cây của lớp 7C trồng được nhiều hơn số cây của lớp 7B là 18 cây nên 3 phần này tương ứng với 18 cây. Số cây của mỗi phần là: 18 : 3 = 6 (cây) Số cây lớp 7A trồng được là: 6 × 6 = 36 (cây) Số cây lớp 7B trồng được là: 6 × 7 = 42 (cây) Số cây lớp 7C trồng được là: 6 × 10 = 60 (cây) Đáp số: Lớp 7A: 36 cây; Lớp 7B: 42 cây; Lớp 7C: 60 cây. Bài 6. Để giải bài toán này, chúng ta sẽ áp dụng phương pháp tìm giá trị của các đại lượng khi biết tổng và tỉ số của chúng. Bước 1: Xác định tổng số phần bằng nhau Tổng số phần bằng nhau là: \[ 3 + 5 + 7 = 15 \text{ (phần)} \] Bước 2: Tìm giá trị của 1 phần Giá trị của 1 phần là: \[ \frac{210 \text{ triệu đồng}}{15} = 14 \text{ triệu đồng} \] Bước 3: Tính số vốn của mỗi nhà sản xuất - Nhà sản xuất thứ nhất góp: \[ 3 \times 14 = 42 \text{ triệu đồng} \] - Nhà sản xuất thứ hai góp: \[ 5 \times 14 = 70 \text{ triệu đồng} \] - Nhà sản xuất thứ ba góp: \[ 7 \times 14 = 98 \text{ triệu đồng} \] Vậy, mỗi nhà sản xuất phải góp số vốn lần lượt là 42 triệu đồng, 70 triệu đồng và 98 triệu đồng. Bài 7. Để giải bài toán này, chúng ta sẽ áp dụng phương pháp tỉ lệ thuận để xác định số cây xanh mà mỗi lớp phải trồng. 1. Tìm tổng số học sinh của ba lớp: \[ 45 + 54 + 51 = 150 \text{ học sinh} \] 2. Tính tỷ lệ của mỗi lớp so với tổng số học sinh: - Lớp 7A: \[ \frac{45}{150} = \frac{3}{10} \] - Lớp 7B: \[ \frac{54}{150} = \frac{9}{25} \] - Lớp 7C: \[ \frac{51}{150} = \frac{17}{50} \] 3. Tính số cây xanh mà mỗi lớp phải trồng dựa trên tỷ lệ: - Số cây xanh lớp 7A phải trồng: \[ 50 \times \frac{3}{10} = 15 \text{ cây} \] - Số cây xanh lớp 7B phải trồng: \[ 50 \times \frac{9}{25} = 18 \text{ cây} \] - Số cây xanh lớp 7C phải trồng: \[ 50 \times \frac{17}{50} = 17 \text{ cây} \] Đáp số: - Lớp 7A: 15 cây - Lớp 7B: 18 cây - Lớp 7C: 17 cây Bài 8. a) Ta có góc ABC và góc CDK là hai góc so le trong, do đó: \[ \text{góc ABC} = \text{góc CDK} = 110^\circ \] b) Ta có góc ABK và góc ABC là hai góc kề bù, do đó: \[ \text{góc ABK} = 180^\circ - \text{góc ABC} = 180^\circ - 110^\circ = 70^\circ \] Đáp số: a) \( x = 110^\circ \) b) Góc ABK = 70^\circ
Hãy giúp mọi người biết câu trả lời này thế nào?
5.0/5 (1 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận

Bài 7:

Gọi số cây xanh 3 lớp 7A, 7B, 7C trồng và chăm sóc lần lượt là $x, y, z$ (cây) 
$(x, y, z \in N^*)$

Vì số cây xanh tỉ lệ với số học sinh
$\frac{x}{45} = \frac{y}{54} = \frac{z}{51}$

Mà 3 lớp phải trồng 50 cây xanh
$x + y + z = 50$

Áp dụng tính chất dãy tỉ số bằng nhau, có:
$\frac{x}{45} = \frac{y}{54} = \frac{z}{51} = \frac{x + y + z}{45 + 54 + 51} = \frac{50}{150} = \frac{1}{3}$
$
\begin{cases}
x = \frac{1}{3} \cdot 45 = 15 \\
y = \frac{1}{3} \cdot 54 = 18 \\
z = \frac{1}{3} \cdot 51 = 17
\end{cases}$

Vậy số cây xanh 3 lớp phải trồng và chăm sóc lần lượt là 15; 18; 17 cây xanh.

Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận

Nếu bạn muốn hỏi bài tập

Các câu hỏi của bạn luôn được giải đáp dưới 10 phút

Ảnh ads

CÂU HỎI LIÊN QUAN

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved