
02/02/2025
02/02/2025

a) Vi $B H / / C E \Rightarrow \frac{B H}{C E}=\frac{H F}{C F}$
Và $H G / / D C \Rightarrow \frac{H G}{D C}=\frac{H F}{F C}$
Tử (1)., (2) $\Rightarrow \frac{B H}{C E}=\frac{H G}{D C}$
Khi đó $\frac{B H}{C E}=\frac{H G}{D C}=\frac{B H+H G}{C E+D C}=\frac{B G}{D E}$
$
\begin{aligned}
& \text { b) Vì } A B / / C E \Rightarrow \triangle C E M \backsim \triangle B A M \\
& \Rightarrow \frac{C E}{A B}=\frac{E M}{A M} \Rightarrow \frac{C E}{E M}=\frac{A B}{A M}=\frac{C E+A B}{E M+A M}=\frac{E D}{E A} \Rightarrow \frac{C E}{E D}=\frac{E M}{E A} \\
& \text { Chứng minh } \triangle D A E \propto \triangle B H C(c-g-c) \Rightarrow \frac{D E}{B C}=\frac{D A}{B H} \Rightarrow B H \cdot D E=B C \cdot D A=A B \cdot C D
\end{aligned}
$
c) Từ $B H \cdot D E=B C \cdot D A \Rightarrow \frac{B H}{A D}=\frac{B C}{D E}$ Chưng minh $A B H C \sim A D E A(c-g-c)$
02/02/2025
vẽ hình
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
CÂU HỎI LIÊN QUAN
Top thành viên trả lời