giải các câu hỏi sau đây

rotate image
thumb up 0
thumb down
Trả lời câu hỏi của Trường Nguyễn
  • Câu trả lời phải chính xác, đầy đủ dựa trên kiến thức xác thực:
    • ✔ Đối với câu hỏi trắc nghiệm: Đưa đáp án lựa chọn + giải thích lý do chọn đáp án.
    • ✔ Đối với câu hỏi tự luận: Đưa lời giải và đáp án cho câu hỏi.
    • ✔ Đối với câu hỏi trả lời ngắn: Đưa ra đáp án + giải thích lý do.
    • ✔ Chấp nhận sử dụng ảnh do thành viên viết tay, ảnh cần rõ nét, không bị mờ, vỡ ảnh.
  • Sử dụng ngôn ngữ rõ ràng, dễ hiểu.
  • Tránh đưa ra các ý kiến cá nhân mang tính chất chủ quan.
  • Nếu sử dụng thông tin từ nguồn khác, phải trích dẫn nguồn đầy đủ và chính xác.
  • Tuyệt đối không được sao chép các thông tin từ các trang khác, từ AI hoặc chatGPT.
CÂU TRẢ LỜI
avatar
Timi

01/03/2025

Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
Câu 9. Ta biết rằng nếu tam giác ABC đồng dạng với tam giác A'B'C', thì các góc tương ứng của hai tam giác sẽ bằng nhau. Cụ thể: - $\widehat{A} = \widehat{A'}$ - $\widehat{B} = \widehat{B'}$ - $\widehat{C} = \widehat{C'}$ Do đó, trong các khẳng định dưới đây, khẳng định đúng là: A. $\widehat{B} = \widehat{B'}$. Vậy đáp án đúng là A. Câu 10. Trong tam giác MNP vuông tại P, ta áp dụng định lý Pythagoras. Theo định lý này, bình phương của cạnh huyền (cạnh đối diện góc vuông) bằng tổng bình phương của hai cạnh góc vuông. Cạnh huyền của tam giác MNP là MN, còn hai cạnh góc vuông là MP và NP. Do đó, ta có: \[ MN^2 = MP^2 + NP^2 \] Vậy đáp án đúng là: B. \( MN^2 = NP^2 + MP^2 \) Đáp số: B. \( MN^2 = NP^2 + MP^2 \) Câu 11. Để giải quyết câu hỏi này, chúng ta sẽ kiểm tra từng mệnh đề một. Mệnh đề (I): "Nếu một góc nhọn của tam giác vuông này bằng một góc nhọn của tam giác vuông kia thì hai tam giác vuông ấy đồng dạng." - Trong tam giác vuông, tổng của ba góc là 180°. Vì có một góc vuông (90°), tổng của hai góc nhọn còn lại là 90°. - Nếu một góc nhọn của tam giác vuông này bằng một góc nhọn của tam giác vuông kia, thì góc còn lại của mỗi tam giác cũng sẽ bằng nhau (vì tổng của hai góc nhọn là 90°). - Do đó, theo tiêu chí đồng dạng góc-góc (góc giữa hai cạnh tỉ lệ), hai tam giác vuông này sẽ đồng dạng. Vậy mệnh đề (I) là đúng. Mệnh đề (II): "Nếu một cạnh góc vuông của tam giác vuông này bằng một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông ấy đồng dạng." - Chỉ có một cạnh góc vuông bằng nhau không đủ để kết luận hai tam giác vuông đồng dạng. Chúng ta cần thêm thông tin về các cạnh hoặc góc khác để xác định đồng dạng. - Ví dụ, nếu chỉ biết một cạnh góc vuông bằng nhau nhưng các cạnh còn lại không tỉ lệ với nhau, hai tam giác không đồng dạng. Vậy mệnh đề (II) là sai. Do đó, chỉ có mệnh đề (I) đúng. Đáp án: A. Chỉ có (I) đúng. Câu 12. Để xác định các hình đồng dạng với nhau, ta cần kiểm tra xem các góc tương ứng có bằng nhau và các cạnh tương ứng có tỉ lệ bằng nhau hay không. - Hình 1 và hình 2: + Các góc của hình 1 là 90°, 45°, 45°. + Các góc của hình 2 là 90°, 45°, 45°. Như vậy, các góc tương ứng của hình 1 và hình 2 đều bằng nhau. + Ta kiểm tra tỉ lệ của các cạnh tương ứng: Cạnh 1 của hình 1: Cạnh 1 của hình 2 = 2: 4 = $\frac{1}{2}$ Cạnh 2 của hình 1: Cạnh 2 của hình 2 = 2: 4 = $\frac{1}{2}$ Cạnh 3 của hình 1: Cạnh 3 của hình 2 = 2$\sqrt{2}$: 4$\sqrt{2}$ = $\frac{1}{2}$ Như vậy, các cạnh tương ứng của hình 1 và hình 2 có tỉ lệ bằng nhau. Do đó, hình 1 và hình 2 đồng dạng với nhau. - Hình 1 và hình 3: + Các góc của hình 1 là 90°, 45°, 45°. + Các góc của hình 3 là 90°, 60°, 30°. Như vậy, các góc tương ứng của hình 1 và hình 3 không bằng nhau. Do đó, hình 1 và hình 3 không đồng dạng với nhau. - Hình 2 và hình 3: + Các góc của hình 2 là 90°, 45°, 45°. + Các góc của hình 3 là 90°, 60°, 30°. Như vậy, các góc tương ứng của hình 2 và hình 3 không bằng nhau. Do đó, hình 2 và hình 3 không đồng dạng với nhau. Kết luận: Chỉ có hình 1 và hình 2 đồng dạng với nhau.
Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận

Nếu bạn muốn hỏi bài tập

Các câu hỏi của bạn luôn được giải đáp dưới 10 phút

Ảnh ads

CÂU HỎI LIÊN QUAN

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved