05/04/2025
Làm sao để có câu trả lời hay nhất?
05/04/2025
05/04/2025
chill guyChắc chắn rồi, hãy cùng giải bài toán này từng bước một:
Đề bài: Tìm x thỏa mãn:
3/(3.5) + 3/(5.7) + 3/(7.9) + ... + 3/(x(x+2)) = 11/25
Phân tích bài toán:
Ta nhận thấy các phân số trong tổng có dạng 3/(n(n+2)). Ta có thể viết lại:
3/(n(n+2)) = (3/2) * (1/n - 1/(n+2))
Áp dụng vào bài toán:
3/(3.5) = (3/2) * (1/3 - 1/5)
3/(5.7) = (3/2) * (1/5 - 1/7)
3/(7.9) = (3/2) * (1/7 - 1/9)
...
3/(x(x+2)) = (3/2) * (1/x - 1/(x+2))
Tính tổng:
Khi cộng các phân số trên, ta thấy các số hạng ở giữa bị triệt tiêu, chỉ còn lại số hạng đầu và số hạng cuối:
(3/2) * (1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/x - 1/(x+2)) = 11/25
(3/2) * (1/3 - 1/(x+2)) = 11/25
Giải phương trình:
1/3 - 1/(x+2) = (11/25) * (2/3)
1/3 - 1/(x+2) = 22/75
1/(x+2) = 1/3 - 22/75
1/(x+2) = (25 - 22)/75
1/(x+2) = 3/75
1/(x+2) = 1/25
x + 2 = 25
x = 23
Kết luận:
Vậy x = 23.
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
CÂU HỎI LIÊN QUAN
Top thành viên trả lời