Cho tam giác ABC cân tại A đường cao AD, O là trung điểm của AC, điểm E đối xứng với điểm D qua cạnh OA. a. Chứng minh tứ giác ADCE là hình chữ nhật b. Gọi I là trung điểm của AD, chứng tỏ I là trun...

ADS
thumb up 0
thumb down
Trả lời câu hỏi của Chu Wanning

Làm sao để có câu trả lời hay nhất?

  • Luôn có GIẢI THÍCH các bước giải
  • Không copy câu trả lời của Timi
  • Không sao chép trên mạng
  • Không spam câu trả lời để nhận điểm
  • Spam sẽ bị khóa tài khoản
ADS
CÂU TRẢ LỜI
avatar
Timi

06/04/2025

Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
a. Ta có: (O là trung điểm của AC) (D và E đối xứng qua OA) OA là chung Suy ra: (góc - góc - cạnh) Suy ra: AD = AE (hai cạnh tương ứng) Mà AD vuông góc với BC nên AE vuông góc với BC Suy ra: tứ giác ADCE là hình chữ nhật (tứ giác có 3 góc vuông) b. Ta có: (D và E đối xứng qua OA) (hình chữ nhật) OA là chung Suy ra: (góc - góc - cạnh) Suy ra: DO = EO (hai cạnh tương ứng) Mà I là trung điểm của AD nên I cũng là trung điểm của BE (dấu hiệu nhận biết đường trung tuyến) c. Ta có: Ta có: Suy ra: Diện tích tam giác OAB là:
Hãy giúp mọi người biết câu trả lời này thế nào?
1.0/5 (1 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận
avatar
level icon
Câu trả lời uy tín

a) Xét tứ giác AECD, có:

Hai đường chéo AC và DE cắt nhau tại O

O là trung điểm của AC (gt)

O là trung điểm của DE (E đối xứng với D qua O)

Suy ra tứ giác AECD là hình bình hành.

Ta lại có 

AECD là hình chữ nhật.

b) Vì AECD là hình chữ nhật nên AD = CD và AD // CD hay AD // BD.

Xét ΔABC cân tại A, có AD là đường cao nên AD cũng là đường là đường trung tuyến

D là trung điểm của BC.

BD = DC

Mà AD = DC

AD = DB

Xét ABDE có AD = DB và AD // BD nên ABDE là hình bình hành

Mặt khác I là trung điểm AD

Do đó I là trung điểm của BE.

Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận
ADS

Nếu bạn muốn hỏi bài tập

Các câu hỏi của bạn luôn được giải đáp dưới 10 phút

Ảnh ads

CÂU HỎI LIÊN QUAN

logo footer
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
app store ch play
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi