

3 giờ trước
3 giờ trước
Câu 1. Chọn C.
Giải thích: Thay cặp số $(1; -2)$ vào phương trình: $1 - (-2) = 1 + 2 = 3$ (Đúng).
Câu 2. Chọn B.
Giải thích: Vì $x$ lớn hơn số trung gian $3.7$ và $y$ nhỏ hơn số trung gian đó ($y < 3.7 < x$), nên $x > y$.
Câu 3. Chọn B.
Giải thích: Bất phương trình bậc nhất một ẩn có dạng $ax + b < 0$ (hoặc $>$, $\leq$, $\geq$) với $a \neq 0$.
Câu A loại vì $a = 0$.
Câu C loại vì là bậc 2.
Câu D loại vì khi rút gọn sẽ mất $x$.
Câu 4. Chọn C.
Giải thích: Số dương $1.44$ có hai căn bậc hai là $\sqrt{1.44} = 1.2$ và $-\sqrt{1.44} = -1.2$.
Lưu ý: Nếu hỏi "Căn bậc hai số học" thì mới chỉ chọn đáp án A.
Câu 5. Chọn D.
Giải thích: Theo hằng đẳng thức đáng nhớ $\sqrt{A^2} = |A|$. Do đó $\sqrt{(a-5)^2} = |a-5|$.
Câu 6. Chọn D.
Giải thích: Căn thức $\sqrt{A}$ xác định khi $A \geq 0$. Ta có: $x + 5 \geq 0 \Leftrightarrow x \geq -5$.
Câu 7. Chọn A.
Giải thích: Trong tam giác vuông, $\sin = \frac{\text{đối}}{\text{huyền}}$. Với góc $P$, cạnh đối là $MN$, cạnh huyền là $NP$. Vậy $\sin P = \frac{MN}{NP}$.
Câu 8. Chọn D.
Giải thích: Ta có $R + R' = 5 + 3 = 8$. Vì $OO' = 12 > R + R' = 8$, nên hai đường tròn nằm ở ngoài nhau.
Bài 1.
a) $(3x - 6)(4 + 5x) = 0$
$\Leftrightarrow 3x - 6 = 0$ hoặc $4 + 5x = 0$
Trường hợp 1: $3x = 6 \Leftrightarrow x = 2$.
Trường hợp 2: $5x = -4 \Leftrightarrow x = -0.8$.
Vậy tập nghiệm $S = \{2; -0.8\}$.
b) $\frac{3}{x+2} + \frac{x}{x-2} = \frac{x^2-1}{x^2-4}$
ĐKXĐ: $x \neq 2$ và $x \neq -2$.
Quy đồng mẫu thức ($MC = x^2 - 4$):
$\frac{3(x-2)}{x^2-4} + \frac{x(x+2)}{x^2-4} = \frac{x^2-1}{x^2-4}$
$\Rightarrow 3x - 6 + x^2 + 2x = x^2 - 1$
$\Leftrightarrow x^2 + 5x - 6 = x^2 - 1$
$\Leftrightarrow 5x = 5 \Leftrightarrow x = 1$ (Thỏa mãn ĐKXĐ).
Vậy $x = 1$.
c) Hệ phương trình: $\begin{cases} 5x - 3y = 13 \\ -2x + y = 6 \end{cases}$
Từ phương trình (2), rút $y = 6 + 2x$. Thay vào phương trình (1):
$5x - 3(6 + 2x) = 13$
$\Leftrightarrow 5x - 18 - 6x = 13$
$\Leftrightarrow -x = 31 \Leftrightarrow x = -31$.
Thay $x = -31$ vào $y = 6 + 2x$:
$y = 6 + 2(-31) = 6 - 62 = -56$.
Vậy hệ có nghiệm duy nhất $(x; y) = (-31; -56)$.
d) $7x + 2 < 3x - 2$
$\Leftrightarrow 7x - 3x < -2 - 2$
$\Leftrightarrow 4x < -4$
$\Leftrightarrow x < -1$.
Vậy nghiệm của bất phương trình là $x < -1$.
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
CÂU HỎI LIÊN QUAN
Top thành viên trả lời