Đề bài
Chứng minh rằng một đa diện có các mặt là những tam giác thì tổng số các mặt của nó là một số chẵn. Cho ví dụ.
Phương pháp giải - Xem chi tiết
+) Gọi số mặt của đa diện \(H\) là \( m\), tìm số cạnh của đa diện.
+) Số cạnh của đa diện là số nguyên, từ đó suy ra số mặt của đa diện là số chẵn.
+) Lấy ví dụ: Tứ diện.
Lời giải chi tiết
Giả sử đa diện \((H)\) có \(m\) mặt. Vì mỗi mặt của \((H)\) có 3 cạnh, nên \(m\) mặt có \(3m\) cạnh. Nhưng mỗi cạnh của \((H)\) là cạnh chung của đúng hai mặt nên số cạnh của \((H)\) bằng \(c =\dfrac {3m} 2\). Do \(c\) là số nguyên dương nên \(m\) phải là số chẵn.
Ví dụ: Tứ diện có các mặt đều là hình tam giác và số mặt của tứ diện bằng \(4\) là một số chẵn.
Đề kiểm tra 15 phút - Chương 2 - Hoá học 12
Bài 36. Vấn đề phát triển kinh tế - xã hội ở Duyên hải Nam Trung Bộ
Bài 27. Vấn đề phát triển một số ngành công nghiệp trọng điểm
Unit 6. Endangered Species
Chương 2. Sóng cơ và sóng âm