Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Trong mặt phẳng tọa độ \(Oxy\), cho các điểm \(A (1; 1), B(0; 3), C(2; 4)\) .Xác định ảnh của tam giác \(ABC\) qua các phép biến hình sau.
LG a
Phép tịnh tiến theo vectơ \(\overrightarrow v = (2; 1)\).
Phương pháp giải:
Sử dụng biểu thức tọa độ của các phép biến hình.
Lời giải chi tiết:
Trong phép tịnh tiến theo vectơ \(\overrightarrow v = \left( {2;1} \right)\) thì các đỉnh \(A, B, C\) có ảnh là các điểm tương ứng \(A’, B’, C’\).
Từ biểu thức tọa độ
\(\left\{ \matrix{
x' = 2 + x \hfill \cr
y' = 1 + y \hfill \cr} \right.\)
Ta có:
\(A(1; 1) ⇒ A’(3; 2)\)
\(B(0; 3) ⇒ B’(2; 4)\)
\(C(2; 4) ⇒ C’ (4; 5)\)
Tam giác \(A’B’C’\), ảnh của tam giác \(ABC\) trong phép tịnh tiến theo vectơ \(\overrightarrow v\) là tam giác có ba đỉnh \(A’(3; 2), B’(2; 4), C’(4; 5)\)
Dễ thấy đỉnh \(B’\) của \(∆A’B’C’\) trùng với đỉnh \(C\) của \(∆ABC\).
LG b
Phép đối xứng qua trục \(Ox\)
Phương pháp giải:
Sử dụng biểu thức tọa độ của các phép biến hình.
Lời giải chi tiết:
Qua phép đối xứng trục \(Ox\), biểu thức tọa độ là :
\(\left\{ \matrix{
x' = x \hfill \cr
y' = - y \hfill \cr} \right.\)
Do đó ta có: \(∆ A’B’C’\) có các đỉnh \(A’(1; -1), B’(0; -3), C’(2; -4)\)
LG c
Phép đối xứng qua tâm \(I(2;1)\).
Phương pháp giải:
Sử dụng biểu thức tọa độ của các phép biến hình.
Lời giải chi tiết:
Trong phép đối xứng qua tâm \(I(2; 1)\), đỉnh \(A→ A’\) thì \(I\) là trung điểm của \(AA’\). Gọi tọa độ \(A’\) là \((x; y)\) thì:
\(\eqalign{
& 2 = {{1 + x} \over 2} \Rightarrow x = 3 \cr
& 1 = {{1 + y} \over 2} \Rightarrow y = 1 \cr} \)
\(⇒ A’(3; 1)\)
Tương tự, ta có ảnh \(B’, C’\) của các đỉnh \(B, C\) là \(B’(4; -1), C’(2; -2)\)
LG d
Phép quay tâm \(O\) góc \(90^0\).
Phương pháp giải:
Sử dụng biểu thức tọa độ của các phép biến hình.
Lời giải chi tiết:
Trong phép quay tâm \(O\), góc quay \(90^0\) thì tia \(Ox\) biến thành tia \(Oy\), tia \(Oy\) biến thành tia \(Ox\)
Điểm \(A(1; 1) → A’(-1; 1)\)
\(B(0; 3) → B’(-3; 0)\)
\(C(2; 4) → C’(-4; 2)\)
LG e
Phép đồng dạng có được bằng cách thực hiện liên tiếp phép đối xứng qua trục \(Oy\) và phép vị tự tâm \(O\) tỉ số \(k = -2\)
Phương pháp giải:
Sử dụng biểu thức tọa độ của các phép biến hình.
Lời giải chi tiết:
Trong phép đổi xứng qua \(Oy\). \(∆ABC\) biến thành \(∆A_1B_1C_1\), ta có:
\(A(1; 1) → A_1(-1; 1)\)
\(B(0; 3) → B_1(0; 3)\)
\(C(2; 4) → C_1(-2; 4)\)
Với phép vị tự tâm \(O\) tỉ số \(k = -2\) thì \(∆A_1B_1C_1 → ∆A’B’C’\)
\(A_1(-1; 1) → A’(2; -2)\)
\(B_1(0; 3) → B’(0; -6)\)
\(C_1(-2; 4) → C’(4; -8)\)
Vậy trong phép đồng dạng đã cho thì \(∆ABC\) có ảnh là \(∆A’B’C’\) với \(A’(2; -2), B’(0; -6), C’(4; -8)\)
CHƯƠNG 4: ĐẠI CƯƠNG VỀ HÓA HỌC HỮU CƠ
Unit 5: Challenges
Bài 10: Tiết 3: Thực hành: Tìm hiểu sự thay đổi của nền kinh tế Trung Quốc - Tập bản đồ Địa lí 11
Chương 2. Chủ nghĩa xã hội từ năm 1917 đến nay
Unit 3: Social Issues
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11