Bài 1 trang 128 Tài liệu dạy – học Toán 9 tập 1

Đề bài

Cho đường tròn (O) và điểm M nằm bên trong đường tròn. AB là dây qua M vuông góc với OM ; CD là dây qua M không vuông góc với OM. Chứng minh rằng AB < CD. ( Hướng dẫn : Kẻ OI vuông góc CD, OI < OM ).

Phương pháp giải - Xem chi tiết

Kẻ \(OI \bot CD\), chứng minh \(OI < OM\). Sử dụng định lí: Trong một đường tròn, dây gần tâm hơn thì lớn hơn.

Lời giải chi tiết

 

Kẻ \(OI \bot CD,\,\,M \in CD \Rightarrow OI \bot IM\).

Xét tam giác vuông OMI có: \(OI < OM\) (trong tam giác vuông, cạnh góc vuông nhỏ hơn cạnh huyền).

Mà \(OI \bot CD,\,\,OM \bot AB\) nên \(CD > AB\) (trong một đường tròn, dây gần tâm hơn thì lớn hơn).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved