Bài 1 trang 129 Tài liệu dạy – học Toán 9 tập 1

Đề bài

Cho đường tròn tâm O ngoại tiếp tam giác ABC. Số đo các góc A, B, C tương ứng là \({50^o},{60^o},{70^o}\). Từ O kẻ các đường thẳng OM, ON, OP lần lượt vuông góc với các dây BC, AC, AB tại M, N, P. So sánh các khoảng cách OM, ON và OP.

Phương pháp giải - Xem chi tiết

Sử dụng các định lí :

- Trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn.

- Trong một đường tròn, dây lớn hơn thì gần tâm hơn.

Lời giải chi tiết

 

 

Ta có \(\widehat A < \widehat B < \widehat C\,\,\left( {{{50}^0} < {{60}^0} < {{70}^0}} \right)\) nên \(BC < AC < AB\) (trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn).

Do đó \(OM > ON > OP\) (trong một đường tròn, dây lớn hơn thì gần tâm hơn).

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved