Bài 1 trang 23 SGK Hình học 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Trong mặt phẳng \(Oxy\) cho các điểm \(A(-3;2), B(-4;5)\) và \(C(-1;3)\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Chứng minh rằng các điểm \(A'(2;3), B'(5;4)\) và \(C'(3;1)\) theo thứ tự là ảnh của \(A, B\) và \(C\) qua phép quay tâm \(O\) góc \( -90^{\circ}\)

Phương pháp giải:

Sử dụng định nghĩa phép quay 

\({Q_{\left( {O;\alpha } \right)}}\left( M \right) = M' \) \(\Leftrightarrow \left\{ \begin{array}{l}
OM' = OM\\
\left( {OM,OM'} \right) = \alpha 
\end{array} \right.\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
\overrightarrow {OA} = \left( { - 3;2} \right);\;\overrightarrow {OA'} = \left( {2;3} \right).\\
OA = \sqrt {{{( - 3)}^2} + {2^2}} = \sqrt {{2^2} + {3^2}} = OA'\\
\overrightarrow {OA} \,.\,\overrightarrow {OA'} = \left( { - 3} \right).2 + 2.3 = 0\\
\Rightarrow \widehat {AOA'} = {90^o}\\
\Rightarrow \left( {OA;\;OA'} \right) = - \widehat {AOA'} = - {90^o}\\
\Rightarrow A' = {Q_{\left( {O; - {{90}^o}} \right)}}(A).
\end{array}\)

Tương tự ta cũng có \({Q_{\left( {O; - {{90}^0}} \right)}}\left( B \right) = B',\) \({Q_{\left( {O; - {{90}^0}} \right)}}\left( C \right) = C'\).

Chú ý:

Cách giải tham khảo (công thức mở rộng)

Sử dụng biểu thức tọa độ của phép quay: Ảnh của điểm \(M(x;y)\) qua phép quay tâm \(O\) góc quay \(\alpha\) là điểm \(M'(x';y')\) với \(x';y'\) thỏa mãn hệ phương trình \(\left\{ \begin{array}{l}x' = x\cos \alpha - y\sin \alpha \\y' = x\sin \alpha + y\cos \alpha \end{array} \right.\)

(hình bên) 

Phép quay tâm góc \(-90^0\) biến điểm \(M(x;y)\) thành điểm \(M'(x';y')\) với \(\left\{ \begin{array}{l}x' = x\cos \left( { - {{90}^0}} \right) - y\sin \left( { - {{90}^0}} \right) = y\\y' = x\sin \left( { - {{90}^0}} \right) + y\cos \left( { - {{90}^0}} \right) = - x\end{array} \right.\)

\( \Rightarrow A'\left( {2;3} \right);\,\,B'\left( {5;4} \right);\,\,C'\left( {3;1} \right)\) lần lượt là ảnh của \(A, B, C\) qua phép quay tâm \(O,\) góc quay \(-90^0\).

 

LG b

Gọi tam giác \({A_{1}}\)\({B_{1}}\)\({C_{1}}\) là ảnh của tam giác \(ABC\) qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm \(O\) góc \( -90^{\circ}\) và phép đối xứng qua trục \(Ox\). Tìm tọa độ các đỉnh của tam giác \({A_{1}}^{}\)\({B_{1}}^{}\)\({C_{1}}^{}\) 

Phương pháp giải:

Thực hiện liên tiếp phép quay tâm \(O\) góc quay \(-90^0\) và phép đối xứng trục \(Ox\) trên mặt phẳng tọa độ \(Oxy.\)

Lời giải chi tiết:

(Hình 1.26)

Gọi tam giác \({A_{1}}^{}\)\({B_{1}}^{}\)\({C_{1}}^{}\) là ảnh của tam giác \(A'B'C'\) qua phép đối xứng trục \(Ox\).

Khi đó,

\(\begin{array}{l}
{A_1} = {D_{Ox}}\left( {A'} \right) \Rightarrow {A_1}\left( {2; - 3} \right)\\
{B_1} = {D_{Ox}}\left( {B'} \right) \Rightarrow {B_1}\left( {5; - 4} \right)\\
{C_1} = {D_{Ox}}\left( {C'} \right) \Rightarrow {C_1}\left( {3; - 1} \right)
\end{array}\)

Vậy \({A_{1}}(2;-3), {B_{1}}^{}(5;-4), {C_{1}}^{}(3;-1).\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved