Bài 3 trang 24 SGK Hình học 11

Đề bài

Chứng minh rằng: Nếu một phép dời hình biến tam giác \(ABC\) thành tam giác \(A'B'C'\) thì nó cũng biến trọng tâm của tam giác \(ABC\) tương ứng thành trọng tâm của tam giác \(A'B'C'\)

Phương pháp giải - Xem chi tiết

Phép dời hình biến các đoạn thẳng thành các đoạn thẳng, do đó biến các trung tuyến thành các trung tuyến tương ứng.

Lời giải chi tiết

 

Gọi phép dời hình đó là \(f\).

Gọi M, N là trung điểm của AB, AC, G là trọng tâm của tam giác ABC.

Do \(f\) biến \(AB, AC\) thành \(A'B', A'C' \) nên f biến \(M, N\) thành \(M', N'\) là trung điểm của của \(A'B', A'C'\).

Vậy \(f\) biến các trung tuyến \(CM, BN\) của tam giác \(ABC\) tương ứng thành các trung tuyến \(C'M', B'N'\) của tam giác \(A'B'C'\).

Do đó f biến G là giao điểm của CM, BN thành G' là giao điểm của C'M', B'N' hay G' là trọng tâm tam giác A'B'C'.

Từ đó suy ra \(f\) biến trọng tâm \(G\) của tam giác \(ABC\) thành trọng tâm \(G'\) của tam giác \(A'B'C'\).

Cách khác:

Gọi f là phép dời hình biến tam giác ABC thành tam giác A’B’C’.

Gọi D là trung điểm của BC, D’ = f(D).

Gọi G là trọng tâm ΔABC, G’ = f(G).

+ B, D, C thẳng hàng ⇒ B’; D’; C’ thẳng hàng.

+ A; G; D thẳng hàng ⇒ A’; G’; D’ thẳng hàng.

+ B’D’ = BD = BC/2 = B’C’/2 ⇒ D’ là trung điểm B’C’.

+ A’G’ = AG = 2.AD/3 = 2.A’D’/3 ⇒ G’ là trọng tâm ΔA’B’C’.

Vậy phép dời hình f biến trọng tâm G của ΔABC thành trọng tâm G’ của ΔA’B’C’ (đpcm).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved