Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Chứng minh rằng: Nếu một phép dời hình biến tam giác \(ABC\) thành tam giác \(A'B'C'\) thì nó cũng biến trọng tâm của tam giác \(ABC\) tương ứng thành trọng tâm của tam giác \(A'B'C'\)
Phương pháp giải - Xem chi tiết
Phép dời hình biến các đoạn thẳng thành các đoạn thẳng, do đó biến các trung tuyến thành các trung tuyến tương ứng.
Lời giải chi tiết
Gọi phép dời hình đó là \(f\).
Gọi M, N là trung điểm của AB, AC, G là trọng tâm của tam giác ABC.
Do \(f\) biến \(AB, AC\) thành \(A'B', A'C' \) nên f biến \(M, N\) thành \(M', N'\) là trung điểm của của \(A'B', A'C'\).
Vậy \(f\) biến các trung tuyến \(CM, BN\) của tam giác \(ABC\) tương ứng thành các trung tuyến \(C'M', B'N'\) của tam giác \(A'B'C'\).
Do đó f biến G là giao điểm của CM, BN thành G' là giao điểm của C'M', B'N' hay G' là trọng tâm tam giác A'B'C'.
Từ đó suy ra \(f\) biến trọng tâm \(G\) của tam giác \(ABC\) thành trọng tâm \(G'\) của tam giác \(A'B'C'\).
Cách khác:
Gọi f là phép dời hình biến tam giác ABC thành tam giác A’B’C’.
Gọi D là trung điểm của BC, D’ = f(D).
Gọi G là trọng tâm ΔABC, G’ = f(G).
+ B, D, C thẳng hàng ⇒ B’; D’; C’ thẳng hàng.
+ A; G; D thẳng hàng ⇒ A’; G’; D’ thẳng hàng.
+ B’D’ = BD = BC/2 = B’C’/2 ⇒ D’ là trung điểm B’C’.
+ A’G’ = AG = 2.AD/3 = 2.A’D’/3 ⇒ G’ là trọng tâm ΔA’B’C’.
Vậy phép dời hình f biến trọng tâm G của ΔABC thành trọng tâm G’ của ΔA’B’C’ (đpcm).
Review 2 (Units 4-5)
PHẦN 1. LỊCH SỬ THẾ GIỚI CẬN ĐẠI (Tiếp theo)
Bài 3. Một số vấn đề mang tính chất toàn cầu - Tập bản đồ Địa lí 11
Bài 10: Tiết 3: Thực hành: Tìm hiểu sự thay đổi của nền kinh tế Trung Quốc - Tập bản đồ Địa lí 11
Chủ đề 2: Kĩ thuật di chuyển
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11