1. Nội dung câu hỏi
Tính:
a) \({\left( {\frac{1}{{256}}} \right)^{ - 0,75}} + {\left( {\frac{1}{{27}}} \right)^{ - \frac{4}{3}}}\).
b) \({\left( {\frac{1}{{49}}} \right)^{ - 1,5}} - {\left( {\frac{1}{{125}}} \right)^{ - \frac{2}{3}}}\).
c) \(\left( {{4^{3 + \sqrt 3 }} - {4^{\sqrt 3 - 1}}} \right){.2^{ - 2\sqrt 3 }}\).
2. Phương pháp giải
Dựa vào các tính chất của lũy thừa để tính.
3. Lời giải chi tiết
a) \({\left( {\frac{1}{{256}}} \right)^{ - 0,75}} + {\left( {\frac{1}{{27}}} \right)^{ - \frac{4}{3}}} = {\left( {\frac{1}{{256}}} \right)^{ - \frac{3}{4}}} + {\left( {\frac{1}{{27}}} \right)^{ - \frac{4}{3}}} = {256^{\frac{3}{4}}} + {27^{\frac{4}{3}}} = \sqrt[4]{{{{256}^3}}} + \sqrt[3]{{{{27}^4}}} = \sqrt[4]{{{{\left( {{2^8}} \right)}^3}}} + \sqrt[3]{{{{\left( {{3^3}} \right)}^4}}}\)
\( = \sqrt[4]{{{2^{24}}}} + \sqrt[3]{{{3^{12}}}} = {2^6} + {3^4} = 145\).
b)
${{\left( \frac{1}{49} \right)}^{-1,5}}-{{\left( \frac{1}{125} \right)}^{-\frac{2}{3}}}={{\left( \frac{1}{49} \right)}^{\frac{3}{2}}}-{{\left( \frac{1}{125} \right)}^{\frac{2}{3}}}={{\left( \frac{1}{7} \right)}^{2.\frac{-3}{2}}}\text{ }\!\!~\!\!\text{ }-{{\left( \frac{1}{5} \right)}^{3.\frac{-2}{3}}}$
$={{\left( {{7}^{-1}} \right)}^{-3}}-{{\left( {{5}^{-1}} \right)}^{-2}}={{7}^{3}}-{{5}^{2}}=318$.
c) \(\left( {{4^{3 + \sqrt 3 }} - {4^{\sqrt 3 - 1}}} \right){.2^{ - 2\sqrt 3 }} = \left( {{2^{6 + 2\sqrt 3 }} - {2^{2\sqrt 3 - 2}}} \right){.2^{ - 2\sqrt 3 }} = {2^6} - {2^{ - 2}} = 64 - \frac{1}{4} = \frac{{255}}{4}\).
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương I - Hóa học 11
SBT Ngữ văn 11 - Chân trời sáng tạo tập 1
Chuyên đề I. Trường hấp dẫn
Chương 5. Cơ thể là một thể thống nhất và ngành nghề liên quan đến sinh học cơ thể
Bài 1: Mở đầu về cân bằng hóa học
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11