Đề bài
Giải phương trình
\({\sin ^2}x - {\mathop{\rm sinx}\nolimits} = 0\).
Phương pháp giải - Xem chi tiết
Đặt nhân tử chung, đưa phương trình về dạng tích và giải các phương trình lượng giác cơ bản:
\(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}
x = \alpha + k2\pi \\
x = \pi - \alpha + k2\pi
\end{array} \right.\,\,\,\left( {k \in Z} \right)\)
Lời giải chi tiết
\(\begin{array}{l}\,\,\,\,\,\,\,{\sin ^2}x - \sin x = 0\\\Leftrightarrow \sin x\left( {\sin x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\\sin x - 1 = 0\end{array} \right.\\\Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\\sin x = 1\end{array} \right.\\\Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \frac{\pi }{2} + k2\pi \end{array} \right.\,\,\,\left( {k \in Z} \right)\end{array}\)
Vậy nghiệm của phương trình là \(x = k\pi \) hoặc \(x = \frac{\pi }{2} + k2\pi \,\,\,\left( {k \in Z} \right)\)
Review 4
Hello!
CHƯƠNG V. CẢM ỨNG ĐIỆN TỪ
CHƯƠNG 1: ĐIỆN TÍCH - ĐIỆN TRƯỜNG
Bài 4: Đơn chất nitrogen
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11