Đề bài
Cho đường tròn tâm \(O\) bán kính \(r\) nằm trên mặt phẳng \((P)\). Từ những điểm \(M\) thuộc đường tròn này ta kẻ những đường thẳng vuông góc với \((P)\). Chứng minh rằng những đường thẳng như vậy nằm trên một mặt trụ tròn xoay. Hãy xác định trục và bán kính của mặt trụ đó.
Phương pháp giải - Xem chi tiết
Dựa vào định nghĩa mặt trụ tròn xoay (SGK - 35).
Trong mặt phẳng (P) cho hai đưuòng thẳng \(\Delta\) và \(l\) song song với nhau, cách nhau một khoảng bằng \(r\). Khi quay mặt phẳng \((P)\) xung quanh \(\Delta\) thì đường thẳng \(l\) sinh tra một mặt tròn xoay được gọi là mặt trụ tròn xoay. Đường thẳng \(\Delta\) gọi là trục, đường thẳng \(l\) là đường sinh và \(r\) là bán kính của mặt trụ.
Lời giải chi tiết
Xét đường thẳng \(∆\) đi qua điểm \(O\) và vuông góc với mặt phẳng \((P)\).
Gọi \(d\) là đường thẳng đi qua \(M\in (C)\) và \(d\) vuông góc với \((P)\). Do đó \(d // ∆\).
Quay mặt phẳng \((Q)\) tạo bởi \(d\) và \(∆\) quanh đường thẳng \(∆\), thì đường thẳng \(d\) vạch lên một mặt trụ tròn xoay. Mặt trụ này chứa tất cả những đường thẳng đi qua các điểm \(M \in (C)\) và vuông góc với \((P)\).
Trục của mặt trụ là \(∆\) và bán kính của trụ bằng \(OM=r\).
Tiếng Anh 12 mới tập 1
Bài 40. Thực hành: Phân tích tình hình phát triển công nghiệp ở Đông Nam Bộ
Unit 12: Water Sports - Thể Thao Dưới Nước
PHẦN NĂM. DI TRUYỀN HỌC
Unit 3. The Green Movement